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In this  paper,  a  comprehensive  overview  of  Computer  Architec- 
ture for Digital Signal  Processing is given. Such  architectures  are 
seen as the result  of  constraining  influences  from the nature  of 
digital signal  processing  algorithms,  architectural  technfques includ 
ing appropriate choice  of  primitive  elements,  the  underlying  digital 
system technology, and  programming  languages  for  digital  signal 
processing. Following a  consideration  of  these  influences,  several 
examples  are  given  ranging  from  chips  through  board  level 
processors, to attached  support processors with very  high  through- 
put. Trends  for the future  are  discussed  throughout the paper. 

I .  INTRODUCTION 

Over  the last 50 years, there has been an astonishing 
change in  both  the nature of signal processing algorithms 
and the computational means utilized  to exercise them [I]. 
Starting before  World War I I ,  there was a period  of classical 
signal processing characterized by static realizations of 
low-pass, band-pass, and high-pass filters that used only 
gross knowledge of signal and noise spectra.  Signal and 
noise statistics were not  utilized, and most of  the imple- 
mentations utilized analog technology. It was common- 
place to design all-pole IIR filters, such as Butterworth, 
Chebyschev, and elliptic designs, and the primary oper- 
ations were differentiation and integration. Computa- 
tionally, these techniques were characterized by taking order 
of N (O(N)) processing time, where N is the number of 
sample points  of the signal being processed at any given 
time.  Following the Second World War,  many applications, 
such as vocoders, that had been implemented in analog 
form became so complex that it was difficult  to explore the 
effect on system performance of the variation of many 
design parameters. For this reason, digital signal processing 
was introduced at first as a simulation technique, with  no 
thought paid to its utility  in direct  real-time applications, 
since the technology to support this usage  was not avail- 
able. During this epoch, there was a more refined  manipu- 

Manuscript  received  April 16,  1984; revised January 25, 1985.  This 
work was supported  by AFOSR under  Contract  F4%20-84Mxll. 

The author is with  the Research Laboratory of Electronics and the 
Department of Electrical Engineering and  Computer Science,  Mas- 
sachusetts Institute of Technology,  Cambridge, MA 02139,  USA. 

ool8-9219/8S/05~52sol.00 Wl985 IEEE 

lation  of data spectra using limited knowledge of signal and 
noise statistics, such as matched and Wiener filters. While 
statistics were  utilized,  they did  not vary with time, nor was 
any model  introduced for the way in  which data were 
generated. As time progressed, implementations became 
primarily digital, and all-zero FIR digital  filters were intro- 
duced. The primary operations performed, in  addition  to 
filtering previously mentioned, included  convolution, corre- 
lation, and efficient techniques for computing  the discrete 
Fourier transform such as the FFT. Corresponding to these 
operations, the computational  complexity  involved was of 
order N2 or Nlog, N, as contrasted to the previous linear 
dependence on N. Finally, in the present epoch, lasting so 
far for approximately 20 years, sophisticated manipulation 
of data spectra using detailed  knowledge  of signal and 
noise statistics has been introduced as exemplified by adap- 
tive and Kalman filters. For  these  systems, statistics  can  vary 
with time,  and  additional structure was imposed by assum- 
ing models on  how data are generated,  such as the linear 
predictive  coding model used in speech. As the  technology 
improved,  implementations became realized digitally  for 
complex systems, taking advantage of  the precision, repeat- 
ability,  high signal-to-noise ratio, and flexibility afforded by 
digital systems. Time-varying digital filters were introduced, 
and matrix difference equations appeared.  Primary oper- 
ations were extended  beyond  the previous emphasis on 
convolution and Fourier transforms to matrix-vector multi- 
plication, matrix-matrix multiplication, linear system solu- 
tion, least  squares solution, and eigenvalue decomposition. 
Algorithms  for these tasks  are characterized by order @ 
processing time, thus putting great demand on effective 
computational means for realization of these systems. 

From this brief view over the  evolving nature of the field, 
it is clear that the complexity  of  digital signal processing 
tasks  has risen markedly, following  not only theoretical 
advances, but also the  rapid advances in integrated circuit 
technology. Clearly, an agent is  needed to coordinate the 
theoretical approaches with the ambient technology, and 
this task has fallen to computer architecture in the large, 
but due  to  the specialized nature of the algorithms per- 
formed in digital signal  processing, specialized processors 
have evolved  for most of these  tasks. The  range of applica- 
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tions, originally focused around low-bandwidth speech  ap- 
plications, has extended dramatically, and has required all 
of  the performance that contemporary computing systems 
can deliver, yet at reasonable  cost.  The techniques used for 
characterizing  computer architecture for  digital signal 
processing are not disjoint  from those  used for computer 
architecture in the large, but the emphasis on various fea- 
tures may vary in order to satisfy application requirements. 

The performance  of  digital  computer systems  has two 
contrasting facets. On the one hand,  greater computational 
throughput can be achieved by improvements in circuit 
performance, and this area is largely driven by the  technol- 
ogy  that is available at  any given time. It is probably safe 
to say that most manufacturers would prefer to achieve 
the desired performance level through utilization of con- 
ventional single-sequence computer architectures with 
state-of-the-art technology. Additional  throughput can be 
achieved, however, through  exploitation  of the parallelism 
inherent in many digital signal processing tasks. Happily, 
many of these tasks provide such a large amount of parallel- 
ism  that it has only recently been completely  exploited 
even for algorithms that have been in use for some time. 
We  will discuss the many means by which this parallelism 
can be translated into computational structures, observing 
that  the  combination of aggressive technology and innova- 
tive  highly parallel architectures can lead to processing rates 
in excess of 200 million floating-point operations per sec- 
ond (megaflops) for 32-bit operands.  This is  certainly a 
startling level  of performance, and one that opens up the 
practical utilization of even the most complex theoretical 
signal processing approaches. 

In  this paper, we give a comprehensive overview  of those 
factors that  constrain the nature of computer architecture 
for  digital signal processing. We start with a fundamental 
view  of the nature of algorithms, including their means of 
representation,  and give a  view of many of the most signifi- 
cant calculations that must be performed, thus revealing 
not  only  the  primitive computational means that must be 
made available, but  the architectural structures that can 
utilize  them  with particular attention  to the level of paral- 
lelism. Following this view of algorithms, we move on  to an 
establishment of a general framework for computer archi- 
tectures that will  allow us to examine the nature of parallel- 
ism along data paths together with its concomitant  control 
in an abstract form that is not encumbered by implementa- 
tion details. This framework will then lead to an examina- 
tion  of a set of techniques that comprise “architectural 
exploration,” whereby the system  designer  may  systemati- 
cally move over the design space of possible architectures 
to select the desired performance level. A comprehensive 
categorization of the means for utilizing contemporary in- 
tegrated circuit technology with a variety of architectural 
styles is given, permitting a broad view  of  the space of 
high-performance  computer systems. Next, an  assessment 
of integrated  circuit technology is given, including  both 
bipolar and MOS technologies, together with their impact 
on canonical circuits, interconnect, and packaging. In this 
section of  the paper, we also give a view of integrated 
circuit design, ranging from utilization of  off-the-shelf cir- 
cuits through semicustom techniques to  full custom design, 
since there is  a great  deal of  innovation for new complex 
special-purpose signal  processing integrated circuits, Hav- 
ing examined  the nature of  digital signal processing al- 

gorithms, architectures, and supporting technology, we 
focus on programming techniques, a factor often ignored in 
early designs but  now seen as essential for the  viability of 
modern processors.  Next, we examine a variety of specific 
designs, ranging from canonical circuit  functions  through 
digital signal processing chips, wafer-scale systems, at- 
tached processors, stand-alone programmable machines, 
systolic arrays, and linear-algebra architectures. We end by 
establishing  a uniform  view over all of these developments 
leading to a reasoned set of expectations for future  pro- 
gress. This is a highly volatile and exciting area, bringing 
together rich theoretical investigations, burgeoning  tech- 
nology,  innovative architectural synthesis, and an unending 
demand  from applications for improved performance. It is  
our  intention  to convey the way in which these wide-rang- 
ing forces are coalescing into a cohesive set of new perfor- 
mance strategies, often yielding well over a factor of a 
thousand  improvement over  even the fastest general-pur- 
pose machines. 

II. ALGORITHMS 

In this section we examine the nature of the algorithms 
that characterize the tasks to be performed in digital signal 
processing. The complementary aspects of architecture and 
architectural units, technology, and data and programming 
structures, are often seen as posing representation issues 
associated with the nature of  the particular implementa- 
tion,  but it must be emphasized that there is  a fundamental 
problem associated with the representation of algorithms 
themselves. From the point of view of system  design, it 
would be useful to be  able to specify and separate what an 
algorithm does from how i t  is performed. This separation is 
sometimes referred to as the competence/performance dis- 
tinction, and it remains a discouraging fact that there is  no 
means available to specify task competence separately from 
task performance over a broad range of tasks.  Thus for 
example, a set of simultaneous linear equations specifies all 
of the constraints that have to  hold for any solution  to 
these equations, but  it is neutral with respect to  indicating 
a performance strategy for the solution of these equations, 
such as Gaussian elimination. Constraint representations 
have been  proposed [2] for this iimited class of systems, but 
they are not available over other task domains of interest to 
digital signal processing. With this observation in mind,  we 
must  proceed with the  knowledge that any algorithm to be 
used in a digital signal  processing  system inevitably  con- 
founds a particular performance bias with the  intrinsic 
nature of  the algorithmic competence. This  means that it is 
impossible to even state an algorithm without  including a 
performance bias, a fact which can  be readily appreciated 
by  the examination  of any textbook on algorithms. Even the 
graphic  nature of algorithmic representation carries with it 
performance biases, including the use of procedural forms, 
such as linear recurrence equations, as well as structural 
forms such as signal flow graphs. In this paper, we will 
introduce and utilize  both equations and  signal flow repre- 
sentations, choosing each form  for its insightfulness where 
appropriate. While we will discuss later the possibility  of 
the use of functional languages, we  will  utilize here  these 
more conventional representations, even though  we must 
emphasize to  the reader that a heightened awareness to the 
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possibility  of latent parallelism must be retained in ex- 
amining all of these  forms. 

We start our discussion of  algorithmic structures by citing 
the forms used for infinite impulse response and finite 
impulse response filters. In the case of infinite impulse 
response filters, the basic building  block frequently  pro- 
vided is  the so-called "second-order section" shown in (1) 

y( n)  = AY( n - I) + BY( n - 2) + Cx( n - 2) 

+ D x ( n  - 1) + x ( . ) .  (1) 

In  the most general form  of the second-order section, the 
two previous values of both the input and the output must 
be  multiplied  by real coefficients. Thus there is an oppor- 
tunity  to  perform as many as four multiplications in parallel, 
the results of  which must then be summed with the tapped 
current input. In the case of  finite impulse response filters, 
the  input sample stream is tapped after a succession of 
delays,  each tapped value being multiplied by a  tap coeffi- 
cient, and then all of these products are summed to  pro- 
duce the  output.  It i s  not  uncommon to have  several 
hundred such taps. Once again, it is clear that the  algorith- 
mic requirement is to compute a sum-of-products. A variety 
of techniques  for  effecting this calculation will be  discussed 
in the sequel. 

Another  fundamental algorithm, used repeatedly in many 
applications, is the  well-known discrete Fourier transform 
(DFT), which is often implem'ented as the fast Fourier 
transform (FFT). The calculation to be performed is shown 
in (2) 

N-1 

X k =  x n W k ,  O g  k g  N - I  (2) 
n - 0  

where. the  output values x k  are obtained by summing the 
products obtained by multiplying the input sample  values 
x ,  by  the complex value W k  = exp(jZn/N)"". These com- 
plex products, X,,Wk, can be formed  from  four real multi- 
plies  and two adds. Straightforward calculation of the DFT 
as a sum of  complex products, however, misses much of the 
inherent structure  of  the FFT algorithm, which is best  seen 
graphically as in Fig. 1. In this representation, an eight-point 

FFT, N = 8 

f 

8 l o g ,  N BUTTERFLIES 

Fig. 1. Eight-point FET, illustrating decomposition  into 
twelve butterflies. 

FFT is  decomposed into three (= log2@ vertical arrays,  each 
of  which involves the calculation  of four "butterflies," 
which are the modular "heart" of  the algorithm. 

The butterfly algorithm, shown graphically in Fig. 2, is  
expressed by  two equations as follows: 

u(m) - 
v(m) 

Fig. 2. Definition of butterfly calculation. 

u ( m + I ) = u ( r n ) + W ' v ( m )  (3) 

v( m + I) = u( m) - ~ ' v (  m ) ,  ( 4) 

The graphical form  of the FFT algorithm shows that in the 
first vertical array, the  inputs to each butterfly are separated 
by  N/2 points. In the second vertical array, the input 
separation is N/4 points, and finally, the separation in the 
last  array i s  just  N/8 = 1 point for the N = 8 example 
shown here. From this example, we can infer the important 
result  that an N-point FFT requires (N/2) log, N butterflies, 
and that each butterfly requires one complex multiply (four 
real multiplies), and two complex adds, as seen from Fig. 2.  
The execution  of the FFT algorithm involves complex ad- 
dress arithmetic  to access the desired operands and to store 
results, but otherwise involves the accumulation of prod- 
ucts as was the case for IIR and FIR digital filters. We have 
illustrated the FFT using a radix-two  formulation, which 
demonstrates the basic principles, although in practice a 
higher radix is often utilized. 

We have already observed that within an N-point FFT, 
(N/2)log2 N butterflies must be calculated, and within the 
butterfly,  four real multiplies and two complex adds  can be 
performed in parallel. The graphical structure of the FFT 
also indicates, however, that there is additional structural 
parallelism  that can  be exploited. One could, of course, 
simply  perform all (N/2) log, N butterflies sequentially, 
while  utilizing the inherent parallelism within each but- 
terfly. This is commonly done, and if  the  execution  time  for 
a butterfly  on a contemporary signal processing machine is 
approximately 1 ps, then with the addition of address and 
1/0 overhead, a 1024-point FFT often takes between 3 and 
8 ms. If log, N butterfly processors  are  available, then the 
overall FFT algorithm can utilize one butterfly processor for 
each vertical array, and thus each  such  processor must 
compute  N/2 butterflies before advancing the data from 
one vertical array to the next. Thus only N/2 butterfly times 
plus overhead are required. Similarly, if N/2  butterfly 
processors are available, a vertical array  can be computed in 
one  butterfly time, so that all of  the vertical arrays present 
in the FFT can then be processed in log, N butterfly times 
plus overhead. Finally, if (N/2)log2 N butterflies are avail- 
able, then there is  a direct  mapping  between the hardware 
available and all  of the butterflies present in the graphical 
description. Such  an approach involves a great  deal of 
parallelism, so that for N = 1024,  5120 butterfly processors 
must  be  provided. This would  imply the utilization  of over 
20000 real multipliers, and such a system  has not been 
built. For N = 16, however, maximum parallelism implies 
only 32 butterfly units, and  such a system  has been recently 
designed utilizing wafer-scale integration [3]. 

At this point it is  well  to emphasize that  the graphical 
signal flow graph representation provides a formalism, first 
worked  out  by Mason [4], for modularly representing filters 
and other signal processing forms in a formal way. These 
graphs  can be  combined  to form larger filters, and they may 
also be  manipulated according to a signal flow graph alge- 
bra to provide alternate but functionally equivalent rep- 
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resentations with different performance attributes. This 
capability has been  exploited to systematically explore per- 
formance options in a way which we will describe in the 
sequel. 

We have already commented in the Introduction  to this 
paper that many signal processing tasks currently being 
investigated  require order @ calculations based on a se- 
quence  of N sample points. These  tasks include  high- 
resolution spectrum analysis, beam forming, and direction 
finding. These new techniques provide improvements in 
performance by incorporating  additional prior  information 
concerning  the spatial or temporal structure of the signal or 
noise. Arising from this and similar tasks is  a set of new 
algorithmic requirements focused around the capabilities of 
linear  numerical systems [SI. The  basic capabilities in such a 
system would  include as a minimum a) matrix-vector, and 
matrix-matrix multiplication, b) matrix inversion via LU 
decomposition for positive definite matrices and via or- 
thogonal triangularization  for general nonsingular matrices, 
c) least  square solution via either orthogonal triangulariza- 
tion or singular value decomposition, and d) Hermitian 
eigensystem solutions via the Jacoby or QR algorithm. This 
is  a  broad range of capability, and although numerical 
programs have been available for general-purpose com- 
puters  for these tasks for some time,  the need to perform 
these substantial computations in real time has given rise to 
intensive research into novel architectures with very high 
throughput, in the range of 700 megaflops. Fortunately, the 
amount  of inherent parallelism in these  large calculations 
allows  implementation of these  systems in contemporary 
technology,  and  we will examine these solutions later in 
the paper. 

In the discussion of algorithms so far, the need for basic 
functional  units such as multiplier-accumulators and ma- 
trix-matrix multipliers has been evident. The high utility of 
these units points  to their  inclusion within specialized 
architectures for  digital signal  processing, but  it should not 
be inferred that  the use of these canonical forms is  suffi- 
cient to perform the  entirety of practical algorithms. There 
is always a substantial amount of computation that does 
not fall  nicely into such  structures; particularly, tasks involv- 
ing heuristic  decision  making and data-dependent condi- 
tionals  where  a steady streaming of data throughput cannot 
be utilized. This means that practical computer architec- 
tures for digital signal processing must include a cornpo- 
nent that  provides general-purpose computing, and it is 
highly desirable that this component be easily programma- 
ble.  In fact, as we shall see,  some designers  have attempted 
to incorporate special-purpose functions within an architec- 
ture that appears to the programmer as a normal single- 
sequence von Neumann  computer. This technique is often 
useful  for signals in the  audio band, but cannot provide a 
total  solution for very-high-bandwidth signals where the 
computational complexity includes linear algebra oper- 
ations. General-purpose computational capability is  also 
needed  for the provision of control in large systems. Data 
transfers, the invocation  of  computational processes, and 
the  partitioning and configuration of computational re- 
sources  have such requirements, although this control does 
not have high demands in terms of specialized computa- 
tions and is  currently being realized by standard micro- 
processors. 

Throughout  our discussion on algorithms, we have em- 
phasized the importance  of representations, both for the 

underlying competence of the  algorithm as well as i t s  
performance. it is important to never  lose sight of  the fact 
that algorithms, no matter how they are presented,  always 
include an inherent bias or even explicit reference to a 
particular class of architectures. This  fact sometimes clouds 
our  ability  to see the underlying structure of algorithms, 
and there is often room for new insights to be generated by 
the  introduction  of  new  primitive computational forms 
within  the context of novel architectures. As an  example of 
this process, we  cite recent work by Ahmed and Morf [6] on 
the synthesis and control of signal processing architectures 
based on generalized rotations. Problems  such as ladder 
filters, adaptive equalization, and beam forming, have been 
mapped  into such representations while  utilizing CORDIC 
(71 primitive processing elements, which have, in fact, been 
known for some time. Thus although there is heavy de- 
served emphasis on the need for multiplication and accu- 
mulation capability within computer architectures for dig- 
ital signal processing, rotation algorithms for many of these 
tasks  may avoid such computations, resulting in acceptable 
performance at reduced implementation cost. 

We believe  that the previous summary has revealed the 
most important basic computations needed in digital signal 
processing algorithms. These  are the forms that signal 
processing architectures must focus on, in order to provide 
several orders of magnitude  improvement over general-pur- 
pose machines in performance The trend over the years  has 
been to progress from scalar arithmetic, through vector 
arithmetic, and most recently, to matrix numerical calcula- 
tions  with  the attendant rise in complexity that we have 
described. At this time, it is not clear what the next exten- 
sion  in  algorithmic complexity will entail, but designers are 
just now  beginning  to exploit  the properties of these al- 
gorithms in practical systems so that it  will be  many years 
before the performance of  computational systems catches 
up with  the demands of these currently understood al- 
gorithms. 

Ill. ARCHITECTURES 

The reason why computer architecture is  important is 
because of the desire for substantial performance levels in 
the execution of computational tasks. In this context, per- 
formance  includes  the amount of  circuitry and associated 
equipment required (space), the speed of execution (time), 
and the  amount  of power d'issipation or total energy re- 
quired  to  perform a given task. Were it not  for this in- 
sistence on performance, universal machines  such as Turing 
machines would have been constructed, and the develop- 
ment  of architectural capability would not have flourished 
as it has. It might seem  at first that questions of perfory 
mance cannot be addressed without strong reference to  the 
supporting technology. With respect to absolute measures 
of space, time, and power, this is unquestionably true, but 
it turns out that abstract representations can be introduced 
to  both  exhibit and manipulate parallelism, and hence pro- 
vide basic insight into space/time tradeoffs that are central 
to any architectural decision. Accordingly, we will first 
introduce abstract computation schemata to support the 
examination of architectural design alternatives. This will 
lead  naturally to an examination of various techniques for 
deriving alternative architectures, as well as the particular 
architectural structures that have evolved in digital signal 
processing systems. 
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We start by  introducing the data dependence graph [8]. 
These structures are directed graphs  each branch of which 
is unidirectional connecting nodes that consist of operators 
(designated as circles) and data cells (designated as rectan- 
gles).  Fig. 3 shows a data-dependence graph for  a parallel 
multiplier. The input cells are A and B, and the output cell 

7 + 4 y + z  

AB = 2'b,A + 2'b2A + 2b,A + b,A 

Fig. 3. Data  dependence  graph  for a parallel multiplier. The 
length  of  the  multiplier operand is 4 bits. 

is designated ab. The data-dependence graph exhibits ex- 
plicitly the dependence of node values on other values 
present in  the graph. The  clear implication is that the  firing 
of a given operator cannot take place until the values 
required at i t s  inputs have been asserted from other points 
of  the graph. Furthermore, a data-dependence graph for a 
particular algorithm can  be constructed by creating a data 
cell or an operator in the graph whenever a new result or 
computation is called for in the algorithm. By this simple 
expedient, no operator or cell in the data-dependence 
graph is ever reused on a single computation basis.  Thus 
every new value computed is given a new data cell, and 
every instantiation  of an opsrator is given a new operator 
node, even i f  this operation (e.g., addition) is used re- 
peatedly in  the given algorithm. It is easy to see that such a 
construction technique naturally exhibits all of the paral- 
lelism present in an algorithm. It is also not hard to realize 
that compilation techniques have been developed in the 
area of data flow computer research that translate from an 
input functional description to such a graphical data-depen- 
dence graph that exhibits the maximally parallel form of  the 
task to be  computed. The data-dependence graph thus 
manifests in convenient visual form the fundamental con- 
straints that are  essential to the  underlying semantics of a 
variety of  different algorithms, all of which compute  the 
same values. In and of itself, the graph says nothing about 
the absolute order in time with  which the operators are 
fired. That is to say,  an execution sequence can be imposed 
on  the operators of the graph with some freedom as long as 
this sequence is consistent with the precedences indicated 
by  the  directed arcs of the graph.  This  means that any 
partial ordering  of  the  finite set of elements comprising the 
nodes of the graph can be extended by means of an 
execution seque ce to a total ordering. 

It is  also imp0 I t  ant to realize that  the data-dependence 
graph avoids the  introduction of conflict  within the descrip- 

tion  of  the computation.  Conflicts can arise at a data cell 
node whenever the corresponding implementation either 
attempts to  write  two different values into the cell at the 
same time, or does not adequately constrain the order with 
which  two  different values from two  different sources  are 
written  into  the cell. Another form of conflict arises when 
the overall system control does not adequately constrain 
the order with  which values  are written  into the  cell and 
subsequently read out. As we will see shortly, substantial 
architectural design effort has been expended in pipeline 
and  multiple functional unit systems to carefully avoid such 
conflicts, while  still reaping the  fruits  of parallelism. This is 
an important tension in the design process,  since whenever 
the designer departs from  a single sequence machine (the 
von  Neumann architecture), there is a corresponding in- 
crease in  the cost of control needed to avoid  conflicts at 
the registers so that the required precedence relationships 
of  the corresponding data-dependence graph are main- 
tained. For the present, what is most important  about the 
data-dependence graph is that it provides a means for 
revealing all  of  the inherent parallelism in a task, together 
with  the essential sequential constraints (i.e.,  precedences) 
that must be maintained by any implementation. It is fur- 
ther important  to  know that data flow functional languages 
[9] have been  introduced, and that compilers exist for these 
languages that can produce  the corresponding data-depen- 
dence graph. Clearly, there are many implementations  of  a 
particular task that can be mapped onto a single underlying 
semantic base prescribed by the data-dependence graph for 
these calculations. This is just another way of saying that, in 
general, many different degrees of parallelism can be ex- 
ploited for  a given calculation. We may think  of imposing 
additional constraints on the data-dependence graph in 
order to  yield a particular architecture. This  may be done 
statically, leading to a fixed (at manufacturing time) archi- 
tecture, or the implemented architecture may actually be 
dynamically  reconfigured on an instruction-by-instruction 
basis to provide an architecture that changes physically in 
time,  all the  while maintaining strict semantic adherence to 
the corresponding data-dependence graph. While this no- 
tion may  seem  excessively  abstract, it has been employed 
with great success in such  machines as the CDC-6600 [IO] 
(and its descendants), the IBM-360/91 [Ill, and a number of 
signal processing architectures including the SPS-41 [I 21 
(and  its descendants).  The notion that a physical architec- 
ture may in fact change in time may  seem startling and 
even foolhardy, but when it is  associated with a well- 
formulated  control strategy rooted in the data-dependence 
graph abstraction, a systematic means for avoiding design 
errors is afforded. 

It is, of course, possible to cast the familiar signal flow 
graphs of interest in digital signal processing into the for- 
malism provided by the data-dependence graph. Once 
again, the signal flow graph merely records the inherent 
precedences required for semantic coherence in the al- 
gorithm. The architect can then pick the degree of paral- 
lelism desired in the final system, with  full awareness of  all 
the constraints that must be maintained. 

From the above discussion, it is  clear  that, in general, 
there will  be many possible concrete architectures corre- 
sponding to a  given algorithmic task.  From this observation, 
it is  natural for the system  designer to want to explore the 
various architectural alternatives that are consistent with 
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the  underlying data-dependence graph. One may think  of 
the designer as moving through  the architectural space 
provided  by  the possible space/time tradeoffs, possibly 
deriving  the technological consequences of particular alter- 
natives that seem attractive. Much recent work has focused 
on  the basic tools needed to enable such architectural 
exploration, while keeping  the initially given function or 
semantic content invariant. A simple example of these tech- 
niques has been  provided by Darringer [I31 and his associ- 
ates  at IBM. In their scheme, employed in the design of 
gate arrays, the  initial functional  specification (in terms of 
logic equations) is naively compiled  into a resultant net list 
of gates in  the target technology. It may be, of course, that 
such a design is unsatisfactory, for reasons  such as inade- 
quate  fan-out, excessive circuit area, or inadequate speed. 
In order to remedy these  defects, a set of local transforma- 
tions is  provided to the user that manipulates the design in 
a  way  that affects these performance variables. Such a 
transformation is  shown in Fig. 4. 

Fig. 4. Logic transformation used for  performance  optimi- 
zation. 

The importance of these transformations is  that while 
they are introduced  to affect performance variables, they 
are always guaranteed to maintain  the  original  functional 
intent, and thus  constitute a form of architectural explora- 
tion. These techniques have been generalized into the 
context  of hardware design language schemas, closely re- 
lated to  data-dependence graphs, by Miranker [14]. The 
transformations introduced  in his work are all keyed around 
the  notion  of  conflict avoidance, as described above, and 
his work provides the theoretical basis for the admissibility 
of sequential versus parallel implementations including  the 
“unwinding”  of iterative loops. While the theory for these 
transformations is  well developed, at present they are not 
implemented in any interactive program, but such a facility 
can be expected within the next few years. 

In a recent thesis by Henrot [15], a new procedure is  
introduced whereby  a signal flow graph can be transformed 
into a  factored graph representation via a decomposition 
procedure  operating on the given signal flow graph.  The 
purpose of this representation is to provide a basis for 
algorithmic specification that is better  suited for considera- 
tions  of hardware implementation. The new factored graph 
representation and the signal flow graph are in one-to-one 
correspondence, but  in the factored graph representation, 
the number  of  multiplications to be  performed along the 
longest delay free path  of  the signal flow graph is  readily 
apparent. The finite graph representation also includes the 
corresponding state-variable representation, and permits the 
transformation of the  topology  of  a signal flow graph while 
controlling i ts implementation features. In particular, the 
designer is  able to examine directly  the degree of parallel- 
ism introduced, as well as the effects of finite  word length. 
The latter follows because,  since the factored graph repre- 
sentation is a matrix, both combinatorial and parametric 
optimization  of digital filtering structures are possible, as 

well as a complete analysis of its arithmetic properties. 
Little experience has been gained with this technique, yet it 
appears to  be promising and useful over a broad variety of 
applications. In another study of the use of transformations, 
Cappello and Steiglitz [I61 have introduced  the use of  affine 
transformations to describe intuitively simple space/time 
rearrangements. In an elegant way,  these transformations 
permit an “interchange”  between  a space dimension and a 
time dimension. Using these techniques, Cappello and 
Steiglitz have related six of H. T.  Kung’s  seven  designs for 
convolution  by means of these geometrical transformations, 
therefore exhibiting the  underlying unity of these ap- 
proaches. Lastly, they have shown that all the designs ob- 
tained  through  implementing the same algorithm but  with 
different geometrical transformations have the same switch- 
ing energy, as defined by Mead and Conway [17]. That is, 
this energy is just distributed  differently in space and time 
so that these affine transformations conserve the  switching 
energy. Once again we see fundamental representational 
techniques being used to  form an insightful basis for archi- 
tectural  exploration. In another interesting result, Rao and 
Kailath [I81 have shown that it is possible to convert systolic 
array implementations for matrix-vector multiplication and 
recurrence evaluations into direct form realizations familiar 
from  the  digital  filtering literature that have robust numeri- 
cal properties. In this case, newer architectural forms are 
translated into more traditional formats where numerical 
properties have been heavily studied. Once again we see 
the  utility  of  providing basic techniques for architectural 
exploration in order to yield designs that are not  only 
appropriate in terms of  the  traditional architectural mea- 
sures but also in terms of practical finite word-length re- 
strictions. Lastly,  Leiserson, Rose, and Saxe (191 have applied 
basic techniques from computer science theory to the tem- 
poral optimization of synchronous systems. A new tech- 
nique of retiming has been introduced so that a more 
efficient  circuit can  be realized under a variety of different 
cost criteria. As the main result, an algorithm is  exhibited 
for  determining an equivalent circuit with  minimum clock 
period. Contained within this. result is  the basic technique 
for  manipulating register locations while preserving seman- 
tic invariance and the timing properties of the functional 
elements. 

From the results cited above, it is clear that a variety of 
new and useful results are being developed that can serve 
as the basis for  a  disciplined  exploration  of  the architectural 
space presented to the system designer. To  date,  these 
results have appeared as separate  studies,  and there is no 
unifying basis through which all of these  results  can  be 
coordinated. There seems to be no  principled reason, how- 
ever, why such a unification cannot be achieved, and such a 
system together with an interactive implementation may be 
expected within the next five years. Not  only  would such a 
contribution be  of immense value to the design of  high- 
performance architectures for digital signal  processing, it 
would also  serve as the first concrete basis for the  codifica- 
tion  of many results in computer architecture, which have 
only been intuitively appreciated by experienced designers 
in the past. Despite  the lack of such a global theory, 
however, it must be emphasized that the presently cited 
results are of substantial utility today to the system design- 
er, and that  they provide a principled, if restrictive, aid  of 
substantial value to the design process. 

ALLEN: COMPUTER ARCHITECTURE F O R  DIGITAL SIGNAL PROCESSING 857 



Having established a general  abstract framework for the 
exhibition  of parallelism in computer architecture, and also 
illustrated several means for  manipulating  a particular archi- 
tecture into other forms with different  utilizations  of space 
and time, we  now examine particular architectural struc- 
tures that have been used for high-performance computer 
architectures. Many  of the techniques that we will discuss 
and illustrate are of general  value for computer architecture 
in  the large.  This means that  although many of these  fea- 
tures assume  great importance for digital signal processing 
architectures, that they are also of general utility and can be 
expected to appear in many high-performance general-pur- 
pose designs. 

As a point  of departure, we consider the single-sequence 
von Neumann machine. In this classical architectural form, 
instructions are executed one after the other with  little or 
no apparent utilization of parallelism. Each instruction must 
be fetched and decoded, and then  the needed operands are 
brought into the processor  unless they are already part of 
the current processor  state.  The selected operation is then 
performed,  and the result is either left as part of  the new 
processor state or  returned to  the main system memory. 
Instructions are executed sequentially from memory unless 
a skip or  jump, often conditionally related to results 
achieved in the processor, redirects the  instruction se- 
quence to a different part of the  instruction memory. It is  
also usually the case that von Neumann machines contain 
both the program instructions and all relevant data within 
one  and  the same memory. In fact, during an era when the 
available technology was severely restricted von Neumann 
considered i t  an  advantage that instructions in memory 
could  be altered by processor activity. This  general 
von  Neumann model is familiar to almost all programmers, 
and it is not surprising that many  designers of  computer 
architectures with greater parallelism have  chosen to arrange 
the architectural structures in such a way that the ma- 
chine behavior appears as that  of a single-sequence 
von  Neumann machine to the programmer, even though a 
great deal of parallelism may  be utilized to provide  improved 
performance. It is also convenient to categorize architec- 
tures in terms of the number of addresses specified in an 
instruction. This number can  range from 0 (stack  machines) 
up to 3 and even 4 i f  the address of the next instruction is  
included  explicitly  within each instructig. There  appear to 
be  no high-performance stack architectures used for  digital 
signal processing, and single-address machines are a rarity 
in this application area. It should not be surprising that 
three-address architectures are prominent since in a single 
instruction, two reads from memory and one write  to mem- 
ory can be specified. This capability would  not be very 
important  for high-performance systems were it  not for the 
fact  that all three of these interactions between  the 
processor state and the main memory can take place simul- 
taneously in a  well-designed architecture. The  way in which 
this is usually achieved is through  pipelining,  a  well-devel- 
oped  technique  which we will  now illustrate. 

In pipelining, a task is broken up  into several sequential 
segments that can be executed one after the other. Fre- 
quently, an analogy between pipelining and assembly-line 
production is made which emphasizes that at  each  stage of 
the  pipeline, a particular specialized computation is per- 
formed  on  the data streaming through. For example, a task 
such as multiplication might be broken up  into say five 

sequential steps. These  subtasks  are generally chosen for 
their nearly equal execution time as well as the narrow 
dispersion in their execution time as a function  of the 
differing data presented to them. If each of the five sub- 
tasks can be performed in n nanoseconds, then clearly a 
total of 5n nanoseconds will be required to perform  one 
multiply. This time is referred to as the latency of  the 
overall multiplier,  but the rate at which  new multiplications 
can be initiated, namely n nanoseconds, is often of greater 
interest when a continuing stream of multiplications must 
be performed. It cannot be overemphasized that pipeline 
systems yield  high performance only  when such a continu- 
ing stream can be maintained, and that any deviation from 
this practice or  interruption  of this computational flow  will 
cause the system to revert to a performance level worse 
than what would be obtained if no  pipelining were imple- 
mented. This phenomenon happens for two reasons. Firstly, 
pipelines  require the insertion  of  pipeline registers at the 
end of each  subtask, so that the  total  time  for  execution of 
the overall task is greater than if one overall combinatorial 
network were used, as in an  array multiplier. The second 
way in which  pipelining can  lead to inferior performance, is 
when  the data flow must be  interrupted and the pipeline 
"emptied  out" before  additional  computations can con- 
tinue. For this reason, architectures and algorithms that 
permit a heavily pipelined stream of  computations to be 
interrupted  by  input/output activities, or which must re- 
spond  to data-dependent conditionals, can often lead to 
poor Performance. Lacking these  disturbances, however, 
pipelined architecture can deliver a very high level of  per- 
formance, so this technique is in widespread use in digital 
signal processing architectures. 

In order to illustrate  the techniques utilized  for  pipelin- 
ing, we have elected to describe a high-performance design 
developed at the MIT Lincoln Laboratory [20]. This design 
has evolved from experience with several previous architec- 
tures intended for signal  processing, and follows the prac- 
tice  of striving to make the architecture appear to the 
programmer as a single-sequence von  Neumann machine. 
Behind this  virtual facade, a great  many architectural tech- 
niques have been utilized  to provide a  high degree of 
parallelism  and  throughput. The architecture for this ma- 
chine is shown in Fig. 5.  

There are three buses to interconnect the data registers, 
ALU, and other functional  units as well as three additional 
buses to connect the data  registers to the data memory. The 
instruction memory is separate, so that instructions can be 
accessed strictly in parallel with other processor  and data 
memory activities. This architecture clearly contemplates a 
staging philosophy in which operands are brought first from 
the  main data memory into the data  registers  and then 
utilized  by  the ALU to perform specific functions. Results 
are then either utilized further within the processor or 
returned to  the data memory. The architecture is  also clearly 
of  the three-address variety, being  motivated by the  fre- 
quent need to  deliver two operands to the ALU and return 
one result to the register file, although there is  also provi- 
sion for loading immediate data from the  instruction word 
onto  the B bus. It is  important to  point out that two 
operands can be read from the register file simultaneously. 
This capability is often achieved by the simple expedient of 
duplicating  the register file, although in custom VLSl de- 
sign, it is not  difficult  to design a register file with memory 
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Fig. 5. 
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Detailed architecture of Lincoln  Laboratory  high-speed  processor. 

cells that have two parallel access lines. For most situations, 
it is contemplated that address arithmetic including index- 
ing  will take place in parallel with other processor activities, 
and indeed  this is the case for the present design. Address 
increments  other  than one can  easily be provided, and one 
index register is equipped with bit reversed increment capa- 
bility for FFT radix-two implementations. Address arithmetic 
could,  of course, be  performed  through  the ALU, but this 
would  incur a timing penalty, and for most practical prob- 
lems, the address arithmetic can  be hidden completely 
within  the overall processor cycle. We will return to a 
consideration of  input/output and special  registers later in 
the discussion, and will  now focus our attention  on the 
nature of  pipelining  in this machine. For instructions utiliz- 
ing  the ALU,  Fig. 6 indicates the data flow sequence that is 
accomplished during each instruction. As shown, two reads 
from memory into registers  can  be performed, an operation 
can be  performed  on  two operands within the ALU, the 
result  of  this  operation can  be returned to one of several 
registers, and  finally the contents of a register  may be 
written back into the main data memory. With the machine 
properly  pipelining, a continuing stream of these complex 
operations can be performed once every 40 ns using ECL 

M, = MEMORY LOCATION a 

RI = REGISTER B 
I = INDEX 

J = INCREMENT 

B = I/O REGISTER 

S = SPECIAL  REGISTER 

Fig. 6. Single  instruction data flow sequence for  Lincoln 
Laboratory  high-speed processor. 

100K technology. Not  only is this a large number of sub- 
tasks to be  performed within such a short time, there are 
clear sequential dependencies that would make  such a 
speed highly  difficult  to achieve without the utilization of 
pipehning. In Fig. 7, an instruction sequence is illustrated 
that shows all  of the parallelism that can be introduced 
within each machine cycle. 

Successive  40-ns  cycles elaborate horizontally, while the 
evolving  instruction stream proceeds vertically downward 
in  the  illustration. Notice that there are  several  cycles 
needed  for each instruction. First, the instruction is fetched, 
then decoded, then data are read from the main memory to 
the registers, then  the ALU  operates on re ister operands, 
returning its result to a register, and finally t k  contents of a 
register may be written back into the main data memory. 
Thus five 40-ns cycles are utilized  to perform the complete 
instruction, although the issue rate for new instructions is 
one every 40 ns.  Thus the utilization of pipelining has led  to 
a five-to-one apparent speedup. One of the largest difficul- 
ties in implementing this style of architecture involves con- 
flicts  between r&& and writes to the main data memory. 
In order  for thgmachine  to  function as if i t were a single- 
sequence mach”!ne, it is imperative that data  read  back into 
the data memory from a register  can be properly read by 
the next instruction.  An examination of Fig. 7 will show that 
a write  to  the data memory in instruction I actually takes 
place after reads from the data memory in instruction I + 1, 
In order to provide for correct functioning, it is necessary to 
introduce a “write queue” that can contain two data words. 
When a word is  to be written  from a register into the data 
memory, it i s  first placed into the write queue along with its 
intended address in the data memory. The  system timing is  
implemented in such a way that i f  such  data are required in 
the next instruction, they are simply obtained  from  the 
write queue  directly rather than from the data memory 
proper by means of address compare logic. It also turns out 
that this scheme avoids  any conflict between simultaneous 
data reads and writes in the data memory, and that the 
proper  overall sequencing is maintained. Were this not the 
case, it would  be necessary to introduce an additional cycle 
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for memory writes, or provide for variable-length instruc- 
tions  which are highly undesirable from the system control 
point  of view. Physically, the machine is  configured so that 
data reads from the memory are performed within a cycle 
before data writes may be performed. This  arrangement is 
satisfactory except when  the read and write addresses  are 
identical, in which case the write queue must be utilized  by 
the read logic.  Additionally,  a comparison must be made 
whenever a write is to be  made into the memory to see if 
there is a datum  in the write queue destined for  the same 
address. If so, i t  must be overwritten in order to maintain 
functional coherence. It is interesting to notice how the use 
of  additional  buffering and logic maintains a uniform 
processing sequence and how writes and reads  appear to 
overlap  correctly from a functional point of  view. Special 
hardware for  conflict avoidance is a well-established tech- 
nique, and the reader will be well repaid for any effort  he 
spends studying such  classic architectures as the CDC-6600 
[IO] (and its descendants) as well as the IBM 360/9l [Ill. 
Both of these machines are heavily pipelined,  although  they 
also utilize  multiple functional  units which we have not yet 
discussed. Tagging schemes (in the  Lincoln Laboratory ar- 
chitecture addresses  serve as the tags)  are introduced to 
keep track of  the operands and results as they circulate 
within  the processor. One may think of all of these ar- 
chitectures as maintaining dynamic data-dependence graphs 
whereby the required precedences indicated by the al- 
gorithmic  functionality are constantly maintained on an 
instruction-by-instruction basis. This point of  view is devel- 
oped in detail by Allen and Gallager [8], where they show 
that the conflict-avoidance techniques used by the CDC 
6600 and the IBM 360/9l are conceptually identical al- 
though they vary  vastly in implementation details and in the 
way in  which they have been described by their designers 
in the literature. 

The previous example has shown  the great utility  of 
pipelining  in high-performance architectures. Careful de- 
sign can lead to an architecture where the programmer 
does not have to consciously consider the need to maintain 
the  pipeline stream on a cycle-by-cycle basis.  Serial arith- 
metic forms another kind of pipelining  which has been 
very popular in many implementations of  digital signal 
processing tasks.  The desirability of bit-serial approaches 
varies greatly with the target technology and with the 

intended application. We will discuss  these techniques later 
when  we examine custom integrated circuit architectures 
for signal processing tasks. 

Another kind of architectural structure, often used in 
conjunction  with pipelining, is a set of  multiple functional 
units. At  the  minimum, a simple arithmetic  logic unit is 
needed in every processor. For digital signal  processing, 
however, it i s  common  to  utilize specialized functional 
units in order to increase performance. Thus for example, 
floating-point add and floating-point multiply units are 
frequently  introduced as distinct specialized elements, and 
these are commonly pipelined. We will discuss  examples of 
this usage in the sequel.  There  are two major reasons for 
introducing  multiple functional units. On the one hand, it 
has long  been recognized that specialized architectures can 
provide superior performance when contrasted with gen- 
eral-purpose units. For example, in earlier computers, multi- 
plication was often performed under microcode control  by 
means of repeated shifts and adds.  Yet in signal processing 
computers, it is common  to have array multipliers  which, 
while costly in space and power, provide high-speed per- 
formance by  virtue of  a specialized architecture. Thus archi- 
tectural  specialization is the first reason for the introduction 
of  multiple  functional units. The  second  reason for their use 
is the advantage afforded by parallelism. If several func- 
tional units are available, then the sequential stream of 
instructions can be dispatched to the various units to take 
advantage of their specialized capability. An early example 
of this practice was the CDC 6600 [IO] which has ten 
functional  units that can operate in parallel. Of course, 
when tasks  are dispatched to these units in parallel, it is  
essential to preserve the  intrinsic precedences of the al- 
gorithm  being executed. For this reason, additional control 
complexity must  be  introduced to make  sure that no  con- 
flicts arise.  For  example, if the results of  one  functional unit 
are needed as an input  to another functional  unit,  then this 
latter functional  unit must  be delayed until the appropriate 
operand is  available. This  means of conflict resolution is not 
unlike  the  kind of capability we previously described in 
connection  with  pipelined reads and writes from memory. 
Once again, the control  logic must provide  a consistent 
dynamic data-dependence graph at all steps during the 
algorithm execution. The  reader will also find that the IBM 
360/9 [Ill is yet another example of  conflict-free manage- 
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ment  of  multiple functional units, in  addition  to the heavy 
pipelining used. In that scheme, explicit tags  are used to 
keep track of the local data within the processor that 
circulate among  the functional units. While we cannot 
elaborate on this approach in this paper, we point  out that 
recent research in tagged token data flow architectures [21] 
is based on exactly the same principles, although  the com- 
plexity  of  the  control and functional apparatus is  consider- 
ably greater. As the degree of technological integration 
increases, there may be less apparent utilization  of  multiple 
functional units. This is due to the fact that much logical 
and memory  capability that previously required hundreds of 
separate chips on possibly multiple boards can now be 
implemented on one custom integrated  circuit. We will 
characterize this chip technology later in this paper. 

Another  kind  of architectural structure that is of consider- 
able interest is a specialized case of multiple functional 
units. This is the case of multiple processing elements, 
where each processing element is identical to all the others. 
This situation arises naturally in systolic forms combined 
with  pipelining, and architectures for this purpose have 
been  built  for  convolution [22] and dynamic timewarping 
[23]. Another example is the utilization of many identical 
processors in highly parallel algorithms like the FFT. The 
control for these processors  varies. In some  cases, a single 
instruction  form is broadcast to all of  the processing ele- 
ments  acting in parallel, whereas in other more general 
cases there i s  more local autonomy, although at well-estab- 
lished intervals synchrony among the processing units must 
be established [24].  There is  no question that architectures 
for  digital signal processing will continue to evolve in this 
direction,  taking advantage of  the ability  to fabricate a large 
number of processors and to provide for high-speed local 
interconnect  between them. Current technology is  easily 
able to support the use of  literally thousands of such 
processors when the available parallelism makes this sensi- 
ble.  We must emphasize that the major problems in these 
architectures are concerned with control and communica- 
tion. It i s  not unusual to see proposed designs where the 
communication costs in  time are ten times as great as the 
local processing costs in time within each  processor.  Fur- 
thermore, as was observed in the case of  pipelining,  the 
control  complexity for  highly parallel systems grows very 
quickly  with the  number of processors,  and there is  a 
natural  tension between the amount of parallelism that can 
be  utilized and the flexibility  with  which one can  change 
from  one  computation  to another. There is certainly room 
for  much  additional research in this area. In the near future, 
however, we can expect to witness the successful use of 
vast amounts of parallelism only  for  highly specialized tasks. 
Even for these tasks, such as large FFTs, effective  perfor- 
mance can be expected only  if the start/stop transients 
associated with the  control  of various processes  has a small 
cost with respect to the high bandwidth throughput ex- 
pected for this specialized task. 

We  now  turn our attention  to the  role  of memory within 
high-performance computers. These memories are often 
specialized as to function. We have  already  seen that sep- 
arate program memories and data memories can  easily be 
provided, and it is  not unusual to provide  additional  mem- 
ory for static coefficients.  Memories are also specialized in 
terms of speed.  Thus we expect to see large  data memories 
that are slow coupled with fast register files or  cache 

memories. In fact, it is a main task of the computer architect 
to keep in balance the overall data flow by matching data 
transfers to  the speed with  which they can be utilized by 
the processing elements. There are many techniques utilized 
to  provide  high data  transfer  rates from relatively slow 
memory elements. An obvious technique is  to increase the 
bandwidth  of  the number of bits that can be transferred in 
parallel from such memories. Thus a high-performance 
memory system might transfer 128 or 256 bits in parallel to 
appropriate registers in the processing elements, although 
this presents substantial difficulties in time skew across the 
large number of lines. Another technique is the use of 
interleaving. If data are to be accessed from or to sequential 
memory locations, then  the memory may be broken up  into 
a  number of interleaved units such that accesses to these 
units are overlapped in sequence. Thus for example, the 
CDC 6600 provides 32-way interleaving to a very slow but 
large memory.  Interleaving often works well  with large 
vectors or matrices, but  when the processor must perform 
random accesses from memory, the overall speed drops to 
that associated with a single-memory access. Nevertheless, 
as the number of linear algebra related operations grows 
within  digital signal  processing, interleaving may enjoy a 
larger utilization than at present. When  multiple reads from 
possibly different locations of a memory are needed, du- 
plication  of  the memory may lead to substantial perfor- 
mance improvements. Such  an approach, of course, re- 
quires that writes be  made to  both memories, but for small 
register files  this is  a well-established technique and is  
particularly appropriate in architectures that utilize three- 
address instructions, where two of the addresses denote 
two operands to be supplied to  the ALU. Another tech- 
nique for matching speeds is  the use of cache memory 
which is  based on the locality  principle, for both instruc- 
tions and data. In our example of  pipelining, one may think 
of  the  write queues as small caches, and in larger  machines 
it i s  not unusual to provide large  data  caches as dictated by 
the technological capability. For instruction streams, when 
there i s  a tight loop, it may be possible to keep the entire 
set of instructions associated with the loop  in a high-speed 
cache memory, leading to very high performance. Multiple- 
access ports to a memory are  also utilized, particularly 
when  it is desirable to maintain simultaneous input/  output 
with  computing. This is almost always the case, since the 
overall system must stage new data into the processor 
memories for a succeeding calculation while the present 
calculation is still being executed. Also, result data  must be 
removed from  the processor memories to other staging 
areas for storage  or display. As the technology has evolved, 
there has been a tendency to increase the amount of fast 
memory associated with the processors.  The amount of  this 
fast memory  should  not be  increased without  limit, since at 
some point  the  ability  to communicate with slower mem- 
ories will determine  the overall performance level. Most 
new designs are selecting memory elements that provide 
both  high speed and improved capacity, but  in a way that is  
consistent with  the entire memory hierarchy of  the system. 
There is no substitute for careful timing simulation of an 
overall system utilizing the algorithms of interest to  find 
where the  memory transfer bottlenecks reside. Once these 
difficulties are appreciated, it i s  usually possible to use one 
or more of  the techniques that we have mentioned to 
alleviate  the  problem. 
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In our earlier mention  of  multiple processing elements, 
our focus was directed to those  processors acting  directly 
on data as part of the algorithmic execution. All high-per- 
formance systems, however, require additional processors 
for  control.  We have  already  seen that the processing 
needed to  maintain conflict-free  operation and to balance 
data flow  through the several memories of a system  can be 
substantial. The greater the degree of parallelism, and the 
possibility  for  introducing dynamic data-dependence capa- 
bility,  the  more  control complexity can  be expected. Fur- 
thermore, control processors  are  necessary to perform ad- 
dress generation and for decision making resulting from 
data-dependent  conditionals and hardware or software 
malfunction. What is clear is that modern high-performance 
architectures, particularly those providing several  tens of 
megaflops speed, require several different levels of control 
that must be coordinated  through a separate  processor. 
While earlier machines often provided this control directly 
in terms of  random logic, it is much more common to see 
this  control embedded in a  well-recognized processor that 
runs part  or  all of  the computer operating system. Contem- 
porary microprocessors are often used for this purpose, as 
they  provide adequate speed  and performance without  the 
necessity to design special-purpose logic  for each computer 
system that is designed. Clearly these control processors 
can execute in parallel with other elements, and unlike  the 
data flow processors, they utilize very little  pipelining in 
order to retain  a degree of flexibility  to respond to a variety 
of  interrupt situations. 

The last kind  of architectural structure that must be 
mentioned concerns input/output. Here, of course, we 
must be concerned with  not  only the amount of data to be 
transferred, but also the speed of  the transfers. In some 
architectures, for overall throughput reasons it is common 
to  transfer an entire  block  of data to the specialized 
processor and then return the results as a  block later to  the 
host processor. On the other hand, relatively low-speed 
plug-in boards that are used to enhance particular calcula- 
tions, such as  FFT, often use a direct memory access con- 
nection so there is no block transfer of data from the host 
computer to any  processor memory. This approach obvi- 
ously cuts down  the need for such memory in the processor, 
and makes  sense when the data  can be accessed from  or to 
the host machine at speeds that are well matched to  the 
attached processor. Large  systems for digital signal 
processing computing  often have  several input/output 
processors  associated with them, and although in the past 
these were often a single physical processor time  multi- 
plexed  to  provide several virtual processors,  at present the 
technology  permits the provision of several  separate physi- 
cal processors for  input/output. There  are  several other 
interesting aspects of architectural style having to  do  with 
input/output.  One has to do  with the particular instruc- 
tions  utilized  in the processor for input/output.  In older 
practice, it was common to have specialized instructions for 
input/output, yet in recent practice there has been a  tend- 
ency to provide specialized registers for the control  of 
input/output that reside within the normal address  space 
of the processor. In this way, 1/0 operations can be con- 
trolled and monitored through utilization of  the standard 
instruction set of the machine. Another important aspect of 
architectural style has to  do  with the use of flags  versus 
interrupts. When an interrupt is received, at least a partial 

state save is necessitated, and in a complicated  highly 
pipelined machine, the amount of  control needed for re- 
sponding to an interrupt may be  very high indeed. For this 
reason, in large complicated machines no interrupts have 
been provided, so that  the program must be carefully for- 
mulated to inspect flags under program control at ap- 
propriate intervals. It seems clear that programmers would 
prefer to deal with interrupts, since there is a well-estab- 
lished  software  methodology for their utilization and also 
because  any machine that provides interrupts almost inevi- 
tably provides program flags when they are desirable. It is 
usually the  computer architect and the  digital designer that 
prefer  the use of program flags to interrupts, due to the 
control  complexity introduced in highly parallel pipelined 
machines. Nevertheless, as control becomes more regu- 
larized  through  utilization  of programmed control proc- 
essors, interrupts are becoming more predominant in newer 
designs. 

From the discussion above it is apparent that an  aggres- 
sive architecture  for  digital signal processing may provide  a 
large variety of architectural structures to enhance perfor- 
mance. These will range through pipelining and special 
hardware for  conflict avoidance, through multiple func- 
tional units  and specialized processing elements coupled 
with a well developed memory hierarchy that can support 
continued high-speed computation over a broad class of 
algorithms. Processors and memories are often duplicated 
in order to provide speed, and specialized processors  are 
introduced  for address calculations, generalized control, 
and input/output. High-performance computer systems for 
digital signal processing-utilize all of these techniques cou- 
pled  with aggressive technology. They provide, as we shall 
see, a literal  tour de force of architectural techniques, and 
since we have noted the increasing complexity of the tasks 
undertaken in digital signal  processing, we can expect the 
industry in this field  to continue to exploit all possible 
architectural and technological techniques for high-speed 
performance. 

IV. TECHNOLOGY 

Of  all the factors that influence computer architecture, 
technology i s  without question the most important. It is not 
difficult  to  show  how important architectural ideas,  such as 
general register files, became significant only when the 
appropriate  enabling technology was available, and that 
other ideas, such as multiple specialized processors took on 
reduced  implementations  through techniques such as time 
multiplexing until the technology made completely  distinct 
multiple processors economically viable. Not  only i s  tech- 
nology an incredibly important factor in the  determination 
of architectures, it is an exceedingly robust and volatile 
area. it is probably impossible to overemphasize how fast 
technology is changing, so that in a very  real sense,  any 
commercially available machine is  technologically obsolete. 
For example, in the memory area the  number of bits per 
integrated circuit is increasing at a rate of 70 percent 
per year, and the logic density available (number of gates 
per unit area) is increasing by 25 percent per  year. The area 
of  individual integrated  circuit die is increasing by 20 per- 
cent per year, and the power delay product associated with 
contemporary processes is dropping  by a factor of two each 
year.  The main negative factor associated with this rapid 
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growth  in technology is that  the cost of design has been 
rising  by at  least 40 percent a year, and we will address this 
factor later in this section. 

The factors that need to be addressed with respect to 
technology  include size,  speed, power, heat dissipation, 
packaging, and input/output capability. At the circuit level, 
IC  technology can be grouped by device type and circuit 
design style. Device types include  bipolar and unipolar 
transistors, as well as Josephson Junction devices. Bipolar 
transistors are utilized in the ubiquitous TTL technology, as 
well as emitter-coupled logic, the latter being  the highest 
speed circuit style in general use within computer systems. 
Unipolar devices are more commonly referred to as MOS 
transistors, and these are available both as p-channel de- 
vices (PMOS) and n-channel devices  (NMOS), or combined 
together in a low-power circuit style called CMOS. TTL 
circuits  provide gate  delays of 2-5 ns, together with modest 
power dissipation. For all but the highest speed applica- 
tions, these circuits are in common use, and it is possible to 
obtain substantial logical or  register memory capability on 
such a  chip. When all-out speed is required, there is no 
substitute for emitter-coupled logic, and several important 
signal processing machines utilize either the 10K or faster 
100K series ECL circuits. While these circuits are very  fast, 
the density of integration on each chip is not as high as for 
TTL, and  the attendant  power dissipation can  rise to several 
watts per chip,  leading to special cooling needs. Among  the 
MOS circuit styles, NMOS provides the densest and fastest 
circuits, but  often involves static power dissipation that can 
limit  the  amount  of circuitry on an individual  chip. All 
contemporary large dynamic RAM memories are NMOS, 
and most high-end microprocessors are currently made in 
NMOS technology. Due  to many  advances in processing, 
however,  CMOS is growing rapidly due to its low power 
dissipation, coupled  with increasing density and speed. 
Increasingly, signal processing chips such as multipliers and 
general-purpose signal  processors  are being implemented 
in CMOS  technology. With CMOS, it is now possible to 
achieve gate  delays of less than 2 ns and large (64K) static 
RAMS are currently available in CMOS. 

In  addition  to  the device type and circuit style, it is 
important t o  consider the design style  associated with 
different technologies. Most engineers are familiar with 
off-the-shelf small-scale and medium-scale integration 
components, but semi-custom and full-custom techniques 
for design are becoming increasingly popular. For example, 
gate arrays provide very fast design turnaround together 
with  low risk and substantial performance improvements in 
many cases. Gate arrays  are available in TTL,  ECL, and 
CMOS technologies, and up  to IOOOO gates can be placed 
on a CMOS array while  up  to 3500 gates can be placed on 
an ECL array. Both of these figures can  be expected to  grow 
rapidly in  the near future. Standard cell capability provides 
even greater density than gate  arrays, and hence &eater 
functionality per chip, through  a higher degree of customi- 
zation  within each functional  cell on the  chip. The  cost and 
risk of this approach is higher than for gate arrays, and the 
turnaround  time is longer, but it provides performance that 
begins to approximate that found  in a  good custom design. 
Finally, there is full-custom design. The  phrase ”full custom” 
needs careful  interpretation, since many will imagine that 
each and every transistor on a full-custom design must be 
individually specified by the design engineer. Since there 

are custom  chips in  production containing over 500000 
transistors, this is clearly an impossible task, and indeed, a 
number of powerful techniques are used to cut down the 
design effort  while  providing the advantages of fully custo- 
mized circuitry. In the  digital signal processing area, per- 
haps the most  interesting  development has been the recent 
appearance of specialized function generators for those 
complex cells that are frequently used in signal  processing. 
For some time it has been common to utilize program logic 
array  generators, and these useful programs  can be  thought 
of as specialized silicon compilers transforming an input 
functional  logic specification into a target layout architec- 
ture  of a very prescribed sort. Borrowing from this idea, 
specialized compilers, each with its own highly optimized 
target layout architecture, have recently been developed. 
For  example, specialized multiplier compilers now exist [25] 
that convert two integers, namely the length  of  the desired 
multiplier  and multiplicand, to a complete layout using an 
array of carry/save  adders together with  modified Booth’s 
recoding. Such a layout is highly regular and is very  close in 
efficiency to  that  obtainable by an optimized manual de- 
sign. Shortly such techniques will be extended to floating- 
point units, so that the designer  can merely specify the 
floating-point  function (e.g., multiplication or addition) to- 
gether with  the size of the exponent and the size of the 
mantissa desired, and obtain the final layout of a  highly 
optimized  cell for  this purpose. These techniques fit  into an 
overall perspective on design whereby the user initially 
specifies a high-level  functional  specification  of  the overall 
chip, which is then  compiled  into a fully parallel data-de- 
pendence graph. An exploration phase follows, such as we 
have described earlier in this paper, to  pick  out the degree 
of parallelism appropriate for the designer’s intentions. The 
result of this phase will be a block diagram containing 
components which must then be realized by the kinds of 
silicon  compilation processes that we have been discussing 
here. In this way, the overall chip is not obtained  through a 
single compilation process, but instead the design engineer 
guides the  overall process to a level where expert function 
generators can produce  the large amount of layout detail 
needed  for the finished  chip. Of course, placement and 
routing capability [26] must also be coupled to this strategy 
in order to produce  a final design. From this view, it should 
be clear that  modern “full-custom” integrated circuit de- 
sign does not involve  the substantial penalties in time and 
effort  required  by earlier custom design techniques. In 
effect, the experience of expert  designers is being encapsu- 
lated  into procedural forms of  knowledge representation 
that can generate specific forms of these circuits upon 
demand. This means that specialized signal processing chips 
with a high degree of performance can now be generated 
much more easily than heretofore. It is  also important to 
emphasize the use of high-level compilation and proce- 
dural techniques in the assembly of pre-existing compo- 
nents on a chip. For example, Denyer [27] has recently 
introduced a compiler for signal processing tasks utilizing 
serial arithmetic and NMOS technology. Designers with 
little integrated  circuit design experience have found it 
possible to design filters and FFT modules utilizing this 
compiler in a few weeks time. The compiler assembles the 
needed modules, places them, and routes them all to- 
gether, while  providing simulation capability to provide 
assurance that the resulting  circuit provides the intended 
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functionality. The resulting layouts are not highly optimal, 
but they are indeed very useful, and in the next few years 
we can expect to see continued development and optimiza- 
tion  of these techniques. 

No discussion of technology for  digital signal processing 
would  be  complete  without a mention of contemporary 
performance  for the most important canonical circuit forms. 
Certainly  that task which has received the most design 
attention is multiplication [28], and it can  be viewed as 
providing a tour de force of architectural space/time trade- 
offs. Multiplication can be regarded algorithmically as con- 
sisting of repeated shifts and adds of  the multiplicand as 
specified by  the bits  of the multiplier, and this technique is  
frequently implemented. On the other hand, there are a 
wide variety of other techniques, including avoidance of 
multiplication,  which are frequently used. In  filter  imple- 
mentations  where  the coefficients are fixed, it is sometimes 
worthwhile  to merely provide for the  required  additions 
within a multiplication, particularly when the number of 
ones in the coefficient  multiplier is relatively small. Tech- 
niques have been  introduced  for  reducing  the  number of 
such specified  additions within a multiplier subject to  the 
functional specification of the filter containing the  multipli- 
cation, and many signal processing chips, including those 
utilized for finite impulse response filters, provide for no 
explicit  multiplication. When more general capability is 
required, however, a complete two’s complement multi- 
plier is generally provided, using either serial arithmetic or 
parallel  arithmetic. For some time there has been a raging 
debate as to  the goodness of serial versus parallel ap- 
proaches. Advocates of the serial approach cite the small 
area required, interconnect simplicity, high  throughput, and 
low power dissipation. On the other hand, critics mention 
the  difficulty  of performing data-dependent conditional 
operations in serial arithmetic which is inherently very 
deeply pipelined, and ascribe high importance to the inter- 
connect problem  only  when such lines must go off-chip. 
Certainly  there are many chips available with  wide busses 
on-chip, and these do  not consume an  excessive  area in 
most applications. Parallel multipliers are preferred by those 
desiring high speed with  minimum latency in throughput. 
While serial techniques have undoubtedly  proved to be 
very useful in many applications, improvements in technol- 
ogy  and circuit design are leading to very fast and dense 
parallel  multipliers, which  will occupy only a very  small 
fraction  of a  chip. While contemporary designs provide  for 
16 X 16  NMOS multipliers operating in  well under 200 ns, 
new results can be expected shortly that provide this same 
functional capability in approximately 50 ns. Not  only  will 
the speed be obtained, but the capability will be  provided 
in low-power CMOS technology. This is  a highly  competi- 
tive business with several manufacturers continuing  to  pro- 
vide  highly aggressive offerings. It is perhaps well  to  mention 
here the possible use of  gallium arsenide as integrated 
circuit material rather than silicon. Here again, a huge 
debate arises over the virtues of  gallium arsenide as op- 
posed to silicon. It is our belief that silicon will  continue  to 
dominate in a major way although impressive laboratory 
results with gallium arsenide  have been measured. For 
example, a gallium arsenide 16 X 16 multiplier operating in 
11 ns has recently been reported [29], and designs are 
underway to achieve 32 X 32-bit multiplication  in gallium 
arsenide within 1 5  ns.  These  are indeed very  impressive 
times, although  it must be emphasized that they are not 

commercially available, and probably cannot be expected 
within  the next five years. 

We  turn  now  to packaging.  This is an exceedingly im- 
portant area, and it is probably not an overstatement to say 
that as much technological innovation has gone into 
packaging in recent years as into device and circuit design. 
As the  amount  of circuitry increases on a chip, the need for 
input/output circuitry rises accordingly, so that the need 
for  new packages with large numbers of pins has been 
increasingly felt.  Without question, the most impressive 
technology in this area  has been developed by IBM through 
a combination  of its introduction of “solder ball” technol- 
ogy with  multilevel ceramic  substrates  [30]. In conventional 
integrated circuits, connections are made from the chip  to 
the package through  bonding pads around the periphery of 
the  chip. In the IBM approach, however, pads  can  be 
provided anywhere on the chip, and connections are made 
to  the package by means of very  small solder balls, thus 
making  for a much more flexible and dependable 
input/output capability  from  the chip to. the package. This 
interconnection strategy is then  coupled with  up  to 33 
levels of interconnect  between ceramic  layers, where the 
conductors are provided by  thick-film paste. When  one 
remembers that the speed of light in air is approximately 1 
ns/ft, and that contemporary ECL gate  delays  are of  the 
order of 350  ps, it is easy to see why such packaging 
technology is  so important. It also turns out that this tech- 
nology is fairly easy to adapt for cooling purposes,  since the 
entire  bottom  of the chip is available for contact with 
heat-exchanger materials. Signal processing machines are 
now beginning  to appear with ECL gate  arrays dissipating 
approximately 4 W [31] that require carefully designed forced 
air cooling, so that these packaging considerations will 
become increasingly important in the years ahead. It is also 
important to  mention here that the engineering design of 
large high-performance  digital signal processing systems 
requires large capabilities in simulation and verification. 
Not  only is logic simulation required, but very careful 
timing  verification must be  provided which takes into 
account the characterization of the packaging. Design 
software is also available for dealing with  cooling require- 
ments, even to the extent of  pinpointing  hot spots on 
projected  chip designs.  The thrust of many of our com- 
ments here has been to show that the design of large 
high-performance  digital signal processing systems  can no 
longer  be regarded as a manual exercise guided by the 
accumulated skill of  the engineer. The  reason is that the 
level of complexity is simply too large for this previously 
utilized design style. Complexity of functionality and design 
has forced designers to  think carefully about the represen- 
tational levels that are important to control in design, and 
to provide  simulation and verification  tools appropriate to 
these concerns. This is  now an active area of research, and 
one where new advances  are appearing at frequent inter- 
vals. 

Another general trend that is important to note is the 
increasing utilization of hybrid techniques in both technol- 
ogy and circuit types. In previous years, we have been 
accustomed to seeing restricted classes of circuits imple- 
mented  in  one technology made  available,  such as arith- 
metic  logic unit capability and T T L  technology. As the 
amount of  capability  provided by a given chip increases, 
these distinctions are blurring both as to technology and 
circuit  function. For  example,  aggressive new processes 
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provide NMOS, CMOS, and limited bipolar  capability all in 
the same  process on the same chip. Thus on a large static 
RAM specialized NMOS circuits can be used for high den- 
sity  and high speed in the  interior of the array, and yet all 
peripheral decoding and access circuitry can utilize  low- 
power CMOS  together with bipolar capability for driving 
the pads. Furthermore, logic and memory are being merged 
together in many designs.  This is  certainly seen in  the 
contemporary signal processing  chips, but even in gate 
arrays, the  trend is  to include  logic and memory together, 
rather  than forcing the user to  build memory modules in an 
inefficient manner from the previously furnished gates. 
These trends are, of course,  yet another example of  the 
optimization  of the  technology in the  direction of  the 
intended  functionality. This movement calls for an  increase 
in process complexity  along with circuit variation and flexi- 
bility, as well as design techniques that can efficiently 
utilize these  resources. It is all part of  a  picture  of increas- 
ingly sophisticated technology being carefully tuned  to the 
needs of  end users. 

We  turn  now  to the consideration of specialized signal 
processing chips.  A number of these are currently available 
commercially,  and many more can be expected in the 
future. Rather than  attempt to give a survey of all of these 
parts, we instead pick one design, the Texas Instruments 
TMS32010 [32] which is  widely utilized  in many applica- 
tions. This part is fabricated in NMOS  technology  (although 
it is currently  being redesigned into CMOS) and operates 
with a 200-ns instruction cycle time. Sixteen-bit instruction 
and data words are utilized, together with a 32-bit ALU/ac- 
cumulator. A 16 X 16 multiplication takes  place within the 
200-ns cycle time, and a 0-15-bit barrel shifter is provided. 
Two  hundred and eighty-eight bytes of on-chip data RAM 
are provided,  although this can  be expanded externally to a 
total  of 8K bytes at full speed. In one version, 3K bytes of 
on-chip program ROM are  also provided. Eight input and 
eight  output channels are available, together with a  16-bit 
bidirectional data bus with 40-Mbit/s transfer  rate.  The die 
size is approximately 49000 mils2,  the  power dissipation 1 
W, and  the standard package is  a 40-pin dual in-line package. 
The reader is referred to the literature [32] for a comprehen- 
sive discussion of this design, but Fig. 8 shows the architec- 
tural block diagram, and Fig. 9 shows a  micro-photograph 
of  the  chip. The block diagram is fairly straightforward, each 
component  being labeled functionally. The  use of  a multi- 
plier,  together with shifter and accumulator to produce 
sums of products, together with a  possibility of an output 
shift is a highly useful and general capability. Separate 
program  and data memories are provided, and a variety of 
addressing modes including direct addressing, indirect ad- 
dressing, and immediate addressing are provided on the 
chip. For filtering and FFT applications, the  inclusion of a 
multiply  immediate instruction is very useful since it  both 
saves on data storage for the coefficients, but also  saves 
their access time.  It is clear what the direction  of  continuing 
evolution  of such chips will be. Without question, given 
the capability to place over half a million transistors at 1-pm 
Iinewidths  on a single die, users will want and receive large 
amounts of  on-chip program and data memory. This is 
probably the most pressing current requirement. As the 
technology heads in the direction of  providing,  for exam- 
ple, I - p m  CMOS capability, speed improvements will also 
be available, with previously cited 16 X 16 multiplier speeds 
of  well  below 50 ns  coupled with processor cycle times in 

the  neighborhood of 25 ns.  The kind of  highly overlapped 
pipelined architecture previously described in this paper 
will become  readily available in the next five years on a 
single  chip, leading  to extremely aggressive performance. In 
fact, such single-chip systems will be so complex, that a 
major part of the development cost is the  construction of 
development software, including  not  only conventional 
simulators and compilers, but real-time simulation, verifica- 
tion, and testing capability within the context of larger 
systems. The provision  of such capability is a  tall order, and 
we can expect to see that the number of specialized digital 
signal processing chips of  high  complexity will go down 
due to the sheer magnitude of the design and support 
effort required. The capability of these chips will be SO 

large, both  in terms of hardware and software, that it  will 
be practical for many applications to fit onto these chips 
without  the need  for specialized or custom hardware. In- 
deed, the chips  that we have  foreseen  here will compete 
aggressively with current board level products from a num- 
ber of manufacturers. 

We leave our discussion of technology with a view of 
some new directions i n  highly integrated system architec- 
tures that are currently  becoming available. We have al- 
ready noted that chips are becoming larger and larger, to 
the extent that we  can  expect chips 1 in on a side by the 
year 1990. There is thus a natural tendency to  think  of 
placing entire systems, including processing and memory 
and input/output capability all within one chip. As the size 
of  the  chip grows, however, the yield for a given level of 
technology goes down, so that at any given time very  large 
chips are not economically viable. One attempt to avert 
these difficulties is to  utilize wafer-scale integration, 
wherein an entire system is built  on a wafer using re- 
dundancy  and discretionary interconnect techniques. The 
overall system is divided up  into a number of modules, 
which are placed, using a redundancy factor of perhaps 
two, over a regular grid on a wafer. After the wafer has 
been fabricated, all  of  the modules are individually tested 
while  the wafer is  still intact. Those modules that are found 
to  function satisfactorily are then connected to the overall 
interconnect network  which utilizes thick metal lines, using 
laser  [33] or electron-beam techniques [34] which are cur- 
rently  well understood. In this way, a high-performance 
system fabricated utilizing a highly  disciplined  interconnect 
technology can be achieved within a very  small  space. 
Recent examples of designs in this framework include  a 
fully parallel 16-point FFT [3], using serial arithmetic. In this 
design, all 32 butterflies are physically implemented, to- 
gether with a redundancy factor of two, so that no fewer 
than 32 X 2 X 4 = 256 serial multipliers are provided on 
the wafer. This design is also accompanied by high band- 
width  input and output capability commensurate with this 
level of arithmetic capability. In another example, a systolic 
design for dynamic  timewarping has been specified for 
wafer scale design [35]. Once again, a highly regular archi- 
tecture is found  to be suitable for  the wafer scale tech- 
nology, and can provide a high level of performance. 

V. PROGRAMMING 

For many years, the emphasis in digital signal processing 
has been on speed, and most users  have worked hard to 
make every bit count. For this reason,  many of  the older 
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and currently available machines are  very difficult  to  pro- 
gram, even in assembly  language. Machine designers, in 
their desire to make available to  the user all of the possible 
performance available,  have provided capabilities and re- 
vealed possibilities for parallelism way beyond the level of 
specification usually encountered by most programmers. 
Writing code for many of these  machines is like  writing a 
horizontal  (long  word length) microcode for a highly  com- 
plicated processor, and hence we have  seen a situation 
where users had to apply the kind of skills normally re- 
served for  machine designers to every-day applications pro- 
gramming. It is not surprising that this practice has led  to a 
great deal of frustration, tedium, and anger, particularly 
when  the manufacturer did not foresee all possible ways in 
which  the hardware might be utilized  by a “clever” pro- 
grammer. The utilization  of large  degrees of parallelism, of 
course, implies a correspondingly large amount of  control 
and  coordination, so that tasks can be  computed in a 

conflict-free way. Until very recently, programmers have 
received very little help, their only reward being the re- 
sultant high speed if in fact they were successfully able to 
apply  the available machines to their tasks. One of the 
results of this  phenomenon has been the development of 
array libraries on many specialized machines. For example, 
many of  the  highly  pipelined commercially available ma- 
chines are so difficult  to program that users typically deal 
with  them as a “subroutine box,” simply calling library 
routines that have been developed by  the manufacturer. 
This approach is satisfactory for standard tasks such as 
convolution, correlation, FFT, and other popular tasks, but 
there is an unquestioned  trend in the direction  of large 
complex tasks that involves many relatively unstructured 
portions of code in  addition  to such familiar library tasks. 
One approach to this problem has been to develop a series 
of machines that utilize many forms of parallelism (includ- 
ing  pipelining, duplicated memories, overlapped I/O, etc.) 
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but  which appear to the programmer as a single-sequence 
von Neumann machine. It is not difficult  to construct the 
control structure for such machines in such a way that this 
appearance is maintained, even though  a few machine 
cycles may occasionally be wasted in connection with 
data-dependent  conditionals. At Lincoln Laboratory, for ex- 
ample, a family of such  machines  have been developed 
which  provide fast  50-ns  cycle time  combined with ECL 
technology and  the appearance of a straightforward single- 
sequence machine to the programmer [36]. These machines 
have been very effective and popular laboratory instru- 
ments, being readily programmed by a wide variety of 
users. The efficiency of assembly  language code is  retained, 
together with a variety of useful software development 
tools. As signal processing tasks become more complex, 
there is an increased need to consider programmer produc- 
tivity  which is enhanced when the programmer does not 
have to mentally juggle several confusing parallel events 
during each  phase of the coding process. 

Another technique used to aid the programmer has been 
the  introduction  of so-called “block-diagram” languages. 
These  languages,  such as BLODl [37] and PATS1 (381 utilize 
next-state simulation techniques, and  have actually been 
available since the earliest days of  digital signal processing 
when  the  main focus of  the field was on simulation.  When 
the task to  be performed can  be highly stylized and parti- 
tioned  into well-understood and coded blocks, then the 
block-diagram approach can be quite useful, and contem- 
porary machines are available to support this approach. 
There  have also been a variety of array-processing lan- 
guages, which seek to exploit the separability of data flow 
computations (such as the FFT butterfly) and address arith- 
metic in a  coordinated way. Thus it is possible to  write 
programs that characterize the data flow of these kernel 

computations  when fed  a continuing stream of input data 
generated by  the separately coded address arithmetic gen- 
erator. Several machines provide considerable support for 
such an approach, although there is a need to provide for 
the careful coordination of these two processes. Specialized 
languages have  also been introduced  for utilization  with 
equally specialized architectures, such as systolic arrays. In 
this way, the user can specify the desired task  at a high 
functional level, and then utilize a specialized compiler to 
provide  the necessary control for an entire  coordinated 
system of systolic processors [24]. Even the programming of 
conventional processors using classical  languages  such as 
Fortran can be  highly  optimized through careful attention 
to control. For example, it has been observed [39] that 
Fortran compilers often create loops when a very  small 
number  of iterations is required, and that the attendant 
overhead in  loop management  reduces running speed sub- 
stantially.  To  avoid these problems, it is possible to  “un- 
wind” these loops, thus increasing the space required  for 
program store, but decreasing their run  time considerably. 
Such techniques  applied to currently available signal 
processing chips have led to very  impressive run times for 
such classical tasks as FFT. 

It seems that in the long run, what is really needed is a 
deep  fundamental understanding of functional specifica- 
tion  coupled  to the semantics of programming languages. 
Two indications of this trend are mentioned here. Kopec 
[40] has made a careful study of  the  limitations  of  block 
diagram and array processing languages, and introduced  a 
new fundamentally based  signal processing language called 
SRL. This language provides a framework for representing 
discrete time signals as abstract objects whose properties 
reflect the mathematical properties of the represented sig- 
nals. As such, it is  concerned primarily with the numerical 
properties of signals,  such as signal dimensions and sample 
values, and a representation of algorithms for computing 
them.  In this language,  signals  are immutable thus leading 
naturally to an applicative style of programming that never 
modifies (in the sense of replacement) an existing signal. 
The language is also well suited for  the introduction of 
signal types which can then be instantiated by specifying 
free parameters in their  definition. For example, a sine  wave 
might be introduced as a type where the frequency and 
phase of  the signal are left as free  variables to be chosen at 
the  time and instance that this signal type is to be utilized. 
A lot  of experience has been gained with this language, and 
i ts clear style has been found attractive by a number of 
users. In the  future, a number of extensions to this language 
will be  provided, thus providing a strong basis for the 
continued development  of complex general-purpose signal 
processing programs. 

We  complete our discussion of programming by  briefly 
discussing a fundamental development in program for- 
malisms and computer architecture for  highly parallel sys- 
tems. For some time now, data flow architectures have 
been under extensive study as  an example of data demand- 
driven calculation. Part of this research  has involved the 
specification of high-level functional languages which can 
then be compiled  into a fully parallel two-dimensional 
representation equivalent to a data-dependence graph.  Cer- 
tainly one of  the applications of these techniques has been 
digital signal processing. Once compilation has taken place 
from  the high-level  functional  specification to the maxi- 
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mally parallel representation of the task, it remains for an 
interpreter to map  the dependency specification onto the 
extant computational resources that are available. In most 
data flow architectural schemes, the level of control and 
communication may  be sufficiently general as to be ineffi- 
cient in several standard digital signal processing tasks  such 
as filtering and spectrum estimation. Nevertheless, we point 
out that the  initial compilation phase into the maximally 
parallel data-dependence graph is  an important contribu- 
tion  of software technology, and that pursuant operations 
of architectural exploration, performed at this high-level 
schematic representation, can serve to provide  the designer 
with  the choice of the degree of parallelism needed in the 
performance of a given task.  Clearly much software de- 
velopment needs to be  completed in order to continue to 
translate the task from its initial functional  specification 
through  the maximally parallel form to the resultant target 
architecture. Work  in precisely this  direction is currently 
underway  and can be expected to lead to a basic approach 
to programming that can accommodate a  wide variety of 
target architectures. Thus the basic programming task is  
seen to represent a combination of  both underlying 
semantic clarity, as illustrated by SRL, together with a care- 
fully based mathematical theory for architectural perfor- 
mance tradeoffs such as those described earlier. There is 
certainly reason to believe that within the next five years 
such a unified approach will be available, coupled to very 
high performance engines utilizing aggressive technology 
and highly parallel architectural structures. 

VI. DIGITAL SIGNAL PROCESSING ARCHITECTURE EXAMPLES 

In recent years, there has been a great profusion  of 
special-purpose architectures developed for various digital 
signal processing applications, ranging all the way from 
single chips through plug-in boards, attached processors, 
stand-alone machines, special-purpose systolic arrays, and 
multiprocessor configurations of both specialized and gen- 
eral-purpose machines. We cannot possibly hope to  indi- 
cate the huge variety of offerings that are available, but  will 
instead pick a few examples that highlight various architec- 
tural techniques. There  are  many interesting examples to 
choose from, and our selection is not meant to confer any 
lesser  status on those designs that have not been described 
explicitly here. Furthermore, we have not described the very 
large general-purpose supercomputers that provide vector 
processing capability useful for various  signal processing 
applications. These  machines were generally not designed 
with  digital signal processing as the main application, and 
are well described elsewhere in  the literature [5]. 

We start  at the chip level. In our discussion of tech- 
nology,  we have  already described the Texas Instruments 
TMS32010 chip as a general-purpose digital signal processing 
architecture. It is interesting that while this chip provides 
substantial speed-up for many filtering and FFT applications 
as compared to a standard  microprocessor, it can still be 
slow  when applied to highly specialized but important 
applications such as dynamic timewarping in speech recog- 
nition.  Due  to  the success of dynamic timewarping for 
improving  the accuracy of template-based speech recogni- 
tion, many investigators have sought to devise custom im- 
plementations  that can provide this capability in real time. 
One such project was undertaken at the University of 
California at Berkeley [41] where the goal was to provide a 

real-time speech recognizer for a one thousand word 
vocabulary using  the dynamic timewarping ( D m )  al- 
gorithm.  Many algorithms for dynamic timewarping have 
been developed but the distance function originally devel- 
oped  by Sakoe and Chiba [42] is used for these calculations, 
as shown here: 

15 

In  this scheme,  each word and reference template is com- 
posed of an ordered sequence of spectral  frames,  and the 
distance between  two words A and B i s  seen to involve the 
selection  of  a nonlinear alignment between the two words 
such that the distance as computed  between the corre- 
sponding spectral frames of these two words along  the 
alignment  path is  minimized. The equations show how this 
calculation is built  up from successive distance measures. 
The block diagram for  the chip used for these calculations 
is shown in Fig. IO ,  and in Fig. 11 a  photo-micrograph of  the 

16 . 

R N  
E T  

S R  8 1 I 
DYNAMIC PROGRAMMING 

16 

Fig. 10. Block  diagram of dynamic timewarping  chip by 
University of California at Berkeley. 

Fig. 11. Micro-photograph of dynamic timewarping chip by 
University of California at  Berkeley. 
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resulting  NMOS  chip is  shown. The chip architecture in- 
cludes  a distance processor that can compute a four-dimen- 
sional Euclidean distance every clock cycle, a pipeline accu- 
mulator that sums 4  four-dimensional Euclidean distances 
into one  16-dimensional distance, a dynamic programming 
processor that can compute one minimization and sum 
every 4 clock cycles,  an  addressing unit for the external 
template and scratchpad memories, and a controller for 
each of the above processors. As an  example, the distance 
processor has a  four-level  pipeline. First, four 4-bit dif- 
ferences in absolute values  are computed  in parallel. Sec- 
ond, these differences are squared resulting in four 8-bit 
values, and then these 8-bit values  are summed pair-wise 
into  two  9-bit values. Finally, a 10-bit sum is  computed, and 
saturated to 8  bits. Similar  degrees of parallelism are used in 
the dynamic  programming processor. What is interesting 
about this chip is that it has been implemented in modest 
technology (4-pm NMOS at a 5-MHz  clock rate using an 
active area of 20000 mil2) and yet it performs a very high 
level of  computation for a 1000-word vocabulary at a real- 
time rate. Inspection of the chip photo-micrograph reveals 
that  there are many regular substructures utilized in the 
design, and that satisfactory performance has been achieved 
without a large amount of custom packing of  individual 
structures. 

Next we  turn  to an  example of a specialized arithmetic 
peripheral designed to be plugged into an existing bus of  a 
minicomputer,  without a separate enclosure. Such boards 
are intended to provide high-speed operation with simple 
programming via Fortran callable subroutines and easy 
installation  both  in the hardware sense and under popular 
minicomputer operating systems. High  arithmetic  through- 
put and low cost are prime considerations for such  boards, 
and they are typically  viewed by their users as floating-point 
or array-processing accelerators. As  an example of this ap- 
proach, we cite  the SKYMNK  system. Two  module boards 
are provided, TTL technology is  utilized, and a cycle time  of 
143  ns is  achieved. Real and complex arithmetic  primitives 
are provided in single precision floating  point, as well as a 
variety  of vector-based instructions. The  system  shares 
memory  with a  minicomputer host according to the archi- 
tecture  shown in Fig.  12. 

As we have  seen in earlier discussion, an external address 
sequencer is  needed to take'matrix data from memory in a 
sequence that isolates desired vectors,  rows, or columns in 
the local SKYMNK operating memory. An  internal address 
sequencer is utilized  within the system and can overlap 
with external memory accesses. Commands may  be entered 
into  the data and command memory so that a sequence of 
tasks may be set up  from the host, and this memory is also 
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fig. 12. Architectural block diagram of SKYMNK arithmetic 
peripheral. 

utilized for providing  working space for 64 floating-point 
numbers. One  of the factors that distinguishes these  sys- 
tems from larger units is  the small amount of system mem- 
ory  provided, requiring substantial partitioning  on the part 
of  the user software. Finally, the  arithmetic unit contains a 
floating-point  multiply and add pipeline. The time  required 
for a  1024-point complex floating-point FFT is  50 ms.  Sys- 
tems such as the SKYMNK  have been very popular for 
providing  the low-cost addition of signal processing capa- 
bility  on inexpensive mini- and microcomputer-based 
systems.  They utilize existing high-performance multiplier- 
accumulator chips, together with multistage pipelined arith- 
metic units  and a small amount of local memory. A continu- 
ing variety of these  machines is  now appearing, and users 
can expect increasing performance at steadily dropping cost 
as technology improves. Since the design of these  systems 
is an architectural specialty, manufacturers of general-pur- 
pose machines will often choose to utilize these  accelera- 
tors rather than expend the design time needed to achieve 
such performance. 

Next  we turn  to a class of machines designated as at- 
tached processors. While such  machines are designed to be 
attached to a host processor, they reside in a separate 
cabinet, often have substantial amounts of internal mem- 
ory, operate at  speeds ranging from  a few megaflops up  to 
100 megaflops, and of course are generally much more 
costly  than the individual plug-in board systems previously 
described. For illustration, we select the Star Technologies 
ST-I00 processor. There  are  several interesting attributes of 
this system, but perhaps the most striking feature is  the 
utilization  of very  aggressive integrated circuit  and packag- 
ing  technology to achieve a high level 100-megaflop perfor- 
mance. First of all, high  arithmetic performance is achieved 
by  the  utilization of ECL gate  arrays,  each dissipating ap- 
proximately  4 W. These  are mounted  on  multiple  pin  chip 
carriers on adaptor boards,  and  each has a cooling  fin  which 
is  housed in a  cylindrical enclosure that confines forced air 
f low  in an efficient way. Memory is  also  packaged in an 
exceedingly dense  way through stacking of submodules 
four  high  on a single printed circuit board capable of 
providing eight million bits of memory. In this way, a total 
system memory of 32 Mbits (using 256K RAMS) is  provided, 
This level of packaging technology has not previously been 
seen except in very  expensive supercomputer designs, and 
is indicative of the levels of performance that can  be 
achieved through the use of elaborate design software that 
provides  for extensive simulation, verification, and testing. 
We cannot overemphasize the fact that such  machines 
simply  cannot be reliably designed and built  without the 
use of these design aids in any  reasonable time. More 
positively, the ST-I00 shows that with the use of such 
software, state-of-the-art, highly aggressive semi-custom 
technology can be efficiently utilized  to provide very high 
performance. 

The overall architecture of  the ST-100 is  indicated in Fig. 
13. The  system is designed so that it can be interfaced from 
several different host computers, via channel adaptors, to as 
many as eight parallel 1/0 processors in the ST-100.  From 
the user point  of view, Fortran application programs run- 
ning  in host machines call large-scale computation processes 
running  on  the ST-I00 which  in  turn call macros for arith- 
metic and data movement within the array  processor. A 
maximum multiplexed channel rate of 25 Mbytes/s to and 
from  the  main memory can  be  sustained. Next, a control 
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Fig. 13. Architectural block diagram of ST-I00 array processor. 

processor using two  Motorola Moo0 microprocessors run- 
ning at a 12.5-MHz clock is utilized  to coordinate all of  the 
activities within  the ST-100.  The control processor manages 
the staging of memory from the host to the ST-I00 main 
memory and on  to a high-speed data  cache which can be 
partitioned  into six different regions for a number of  differ- 
ent processes.  These  data  cache ports are capable of operat- 
ing at  speeds up to 100 Mbytes/s using 8-way interleaving 
of 320-ns  access time memory devices. Furthermore, the 
storage move processor interposed between the main 
memory and the data  cache (which is controlled by the 
control processor)  can perform complex address generation 
for  both memories as well as on-the-fly data format conver- 
sions. Finally, an arithmetic control processor manages two 
pipelined  multipliers and two  pipelined adders, together 
with a divide/square root unit. The 128-bit-wide  control 
word manages all of these facilities as well as four integer 
ALU operations, one test and branch operation, and three 
memory references during each  40-ns clock cycle. In this 
machine, we see virtually all of  the high-performance archi- 
tectural structures used.  These include pipelined arithmetic 
units, multiple hierarchically organized memories, special- 
ized  control processors, multiple  input/output processors, 
specialized address generation and type conversion, and 
very aggressive technology. While the performance of this 
system is  indeed impressive, the reader should not infer 
that it can  always outperform lesser hardware configura- 
tions that are highly optimized for particular tasks.  For 
example, the SPS IO00 system, which provides a very cost- 
effective  solution  to the  computation  of very-large high- 

speed FFTs, utilizes a specialized modular architecture pro- 
viding radix-four FFT calculations using serial arithmetic. 
The overall system architecture can be easily built up, both 
with respect to  word size and FFT size to provide computa- 
tion rates in excess of one billion operations per  second so 
that  a  1024-point complex FFT utilizing 32-bit words can be 
completed in 297 ks. These performance figures indicate  a 
tradeoff that must be contemplated by the user. O n  the  one 
hand, programmability and general-purpose performance 
provide flexibility, yet highly specialized architectures can 
always deliver higher performance for less cost but  with an 
attendant loss in flexibility. 

Earlier in this paper, during our discussion of  pipelined 
processing, we referred to a specific architecture developed 
at MIT Lincoln Laboratory [20] as an example of a continu- 
ing  evolution  of high-performance digital signal processing 
machines. These machines are not commercially available, 
but the use of ECL technology, multiple specialized mem- 
ories, duplicated memories, and high-performance pipelin- 
ing has led  to a stand-alone architecture providing speeds 
in excess of 20 million instructions per  second  (mips) that 
have proved to be exceedingly useful and versatile for the 
development  of high-performance speech  processing al- 
gorithms. Aside from the  high level of hardware perfor- 
mance, the cardinal virtue  of these  machines is  that  they 
appear to  the programmer to be  standard single-sequence 
architectures, and the  control difficulties of dealing with all 
the parallelism are hidden  from the user's architectural view 
of  the machine. The result is  that a large number of al- 
gorithm implementors can use these compact yet high-per- 
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formance units  for algorithm research through  the use of 
standard assemblers and loaders.  This approach to high-per- 
formance digital signal processing has not yet been imple- 
mented  through commercial offerings, perhaps due to the 
fact that the performance of these  machines involves timing 
tolerances that cannot be readily realized in a produc- 
tion-line  environment. Nevertheless, with the advent of 
new design and testing software already mentioned, the 
great utility  of these  machines  may become available to a 
much broader class of user. 

We  now move to discuss  an example of  highly special- 
ized systolic computation. In recent years, a great  deal of 
attention has been focused on  the  utilization of systolic 
schemes for matrix multiplication,  one- and two-dimen- 
sional convolution, and a broad variety of standard linear 
algebra tasks.  Systolic architectures involve  the use of  a 
large number of regular processing elements connected 
into an array that involves only nearest neighbor communi- 
cation and a streaming of data (and occasionally control) 
throughout  the array. Starting from the original  work by 
Kung and Leiserson [43], it has become clear that very high 
performance rates  can  be achieved, although relatively few 
of these specialized processors  have actually been built. For 
our example, we describe a linear array built at ESL [44] from 
TTL technology  on wire-wrapped boards intended to per- 
form matrix multiplication, one-dimensional convolution, 
and  two-dimensional convolution. This implementation was 
a proof-of-concept design, and utilized  only off-the-shelf 
components that are readily available. The overall architec- 
ture  of  the system is  shown in Fig. 14, and the linear array is 
indicated in Fig. 1 5  with the detailed structure of each 
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Fig. 16. Systolic cell architecture for ESL linear systolic array. 

Fig. 17. Photograph of ESL linear systolic array. 

systolic cell  indicated  in Fig. 16.  Fig. 17 shows a picture of 
the  resulting implementation consisting of eight hinged 
board assemblies utilizing commercially available multi- 
pliers and providing for easy maintenance and debugging. 
The systolic processor is  designed to be used as an attached 
processor and is  accessed from  the host through a collec- 
tion of Fortran subprograms.  Data  and commands are trans- 
ferred through the host interface, and  results  and  status 
information can be  returned to the host from the systolic 
processor. A command dispatcher stores systolic processor 
instructions in a command buffer and dispatches  these 
instructions to other subsystems for execution. The local 
memory serves as a buffer to support high-speed operation 
of  the array. The systolic array itself consists of an  array 
controller and  a linear array that can  be configured with any 
number  of cells. The controller i s  utilized  to synchronize 
the  operation  of the local memory and the output processor 
which shifts and rounds the results according to the specifi- 
cations supplied  by the user and also detects the maximum 
result value. Programmable address  generators provide  the 
address  sequences for the local memory and the output 
buffer. The architecture  of the cell is  shown in Fig. 16. Each 
cell consists of a  multiply-accumulate chip, a cell memory 
with 1024 16-bit words, a tag memory with 1024 4-bit 
words, and three latch registers, one for each systolic stream 
that passes through the cell. Since  each cell can perform 
one 16-bit  fixed-point  multiplication and one full precision 
(42-bit)  accumulation every 200  ns,  each cell has a maxi- 
mum  computational rate of 10 million operations per sec- 
ond (mops). Thus a systolic array of 20 cells would have a 
maximum computational rate of 200 mops. The interested 
reader should refer to the cited references for more detailed 
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discussion of architectural control  including the way in 
which matrix multiplication and one-dimensional convolu- 
tion is actually  performed in this architecture. For our pres- 
ent purpose, we  point  out that this system  can be  utilized 
for calculations ranging from a radix-eight DFT with 32-bit 
complex results for 512 X 512 input data at  an effective 
computation rate of 61 mops up  to a one-dimensional 
convolution  with 48-bit results for 4096 input data  size  at  an 
effective  computation rate of 163 mops. These  are indeed 
very impressive performance figures, particularly when  it is  
considered  that conservative technology and packaging has 
been  utilized throughout  this system.  There is no question 
that this architectural approach will be extended to 
special-purpose hardware for  the real-time solution of a 
wide variety of linear algebra tasks. It is known that a family 
of systolic array architectures using a simple lattice of 
processing elements and many identical cells can effec- 
tively carry out  the matrix factorizations required to solve 
linear systems,  least  squares, and eigenvalue problems. There 
is no  question that exceedingly high performance can be 
obtained  through  utilization  of these systolic techniques for 
linear algebra tasks, and that the design of such systems is  
aggressively underway at present. 

VII. SUMMARY 

In this paper we have endeavored to give a comprehen- 
sive view  of computer architecture for  digital signal 
processing. We started by motivating  the need for  digital 
signal processing, and then  showing  the  chronological 
evolution towards increasing levels of complexity, which 
would lead to unacceptable performance on conventional 
single-sequence machines. We noted that any form of  com- 
puter architecture is determined by a number of factors 
including technology,  the nature of the algorithms to be 
performed, data structures utilized, programming language 
considerations, and the intrinsic nature of  the computa- 
tional  functional units themselves. Fortunately, the nature 
of  digital signal processing algorithms, while increasing in 
variety, still contains a number of basic canonical forms that 
are used repeatedly in many applications. These algorithmic 
forms have been characterized, together with the observa- 
tion that it is impossible to specify an algorithm without 
including an inherent performance bias. In order to under- 
stand these biases, we have introduced  a basic model  for 
data flow  and control, and shown  through the data-depen- 
dence graph the inherent sequential constraints that must 
be retained in any implementation. Presentation of this 
level of  algorithmic representation leads naturally to  the 
notion  of architectural exploration whereby a given archi- 
tecture corresponding to a particular algorithm can be sys- 
tematically  manipulated  through performance alternatives 
in order to  yield a tradeoff between space, time, and power 
that is  acceptable for the intended  application. With this 
background, it has then been possible to study the various 
techniques, called- architectural structures, that are intro- 
duced  into comprehensive systems in order to improve 
performance. These structures include  pipelining, multiple 
function units, multiple identical processing elements, a 
wide variety of memory structures, the introduction of 
control processors, and the  provision for high data  rate and 
flexible  input/output. Once a system  designer has selected 

a  particular architecture, together with the architectural 
structures that comprise it, it remains to  utilize some  am- 
bient  technology  in order to realize a physical system. We 
have discussed the overwhelmingly strong impact of tech- 
nology  on system performance, and indicated the many 
technological choices that can be made.  We emphasize 
particularly the rapidity with  which technology i s  changing, 
and point  out that  the  ability to achieve high speed to- 
gether with substantial complexity on a single chip has led 
to  very significant progress in digital signal processing im- 
plementations. This  progress is particularly noteworthy in 
the case of  digital signal processing chips which range from 
custom designs through programmed signal processing chips 
to specially compiled forms intended for very restricted 
classes of computations. We have illustrated  all  of these 
techniques, and contrasted the  role  of  off-the-shelf chips 
versus semi-custom and full-custom designs. Given the 
hardware basis of a system, programming considerations are 
of  prime importance in order to insure high  productivity. In 
the past, programming was a relatively neglected part of 
high-performance  digital signal processing systems, but re- 
cently  much  attention has been focused on this area due to 
the need to conveniently manipulate very substantial com- 
puting resources in a  flexible and insightful way. While 
there has been some  progress in the programming area, 
certainly much remains to be done, particularly when  multi- 
processor systems must be effectively coordinated in an 
error-free way. Finally, we have coordinated  all  of  our 
observations from the previous sections in  the form  of 
illustrative examples. These range from custom chips 
through single-board products, attached processors, high- 
performance stand-alone single-sequence machines, and 
systolic architectures for specialized linear algebra applica- 
tions. Great progress has been made in all of these areas, 
and continued improvements at all levels of performance 
can be expected leading to high performance in compact 
low-cost implementations. 

In many ways, the great benefits of today's technology 
have motivated a more fundamental look at computer ar- 
chitecture  for  digital signal processing systems. In the past, 
the technology was not able to support a wide variety of 
different performance levels, so that the ability  to char- 
acterize in a fundamental and insightful way architectural 
alternatives was not so pressing. At present and into  the 
future, however, the ability to characterize algorithms in 
terms of a well-chosen set of semantic primitives  coupled 
with  the  ability  to systematically explore architectural alter- 
natives and their consequences in the target implementa- 
tion technology, will make computer architecture for  digital 
signal processing as well as computer architecture in  the 
large much more of a science than an art. This desirable 
trend  will become in fact a necessity as the level of com- 
plexity  of  digital signal processing algorithms continues to 
rise. We are witnessing a situation when necessity is  indeed 
the mother of invention, and where the  onrushing  options 
created by a robust technology are forcing the  formation of 
well-codified scientific  principles in this design area. This is 
a welcome and  exciting turn of events, and in the years to 
come system  designers  can contemplate the use of ex- 
tremely  powerful interactive workstations providing a de- 
gree of architectural creativity ranging over the given 
semantic algorithmic basis that has never been possible 
before. This new  found scientific basis, together with  bur- 
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geoning technology, will continue to fuel rapid and impres- 
sive  advances in all facets of the  digital signal processing 
field, and it i s  likely that we are witnessing just the  begin- 
ning of such an impressive long-term trend. 
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