
Computer Architecture for Digital Signal
Processing

JONATHAN ALLEN, FELLOW, IEEE

Invited Paper

In this paper, a comprehensive overview of Computer Architec-
ture for Digital Signal Processing is given. Such architectures are
seen as the result of constraining influences from the nature of
digital signal processing algorithms, architectural technfques includ
ing appropriate choice of primitive elements, the underlying digital
system technology, and programming languages for digital signal
processing. Following a consideration of these influences, several
examples are given ranging from chips through board level
processors, to attached support processors with very high through-
put. Trends for the future are discussed throughout the paper.

I . INTRODUCTION

Over the last 50 years, there has been an astonishing
change in both the nature of signal processing algorithms
and the computational means utilized to exercise them [I].
Starting before World War I I , there was a period of classical
signal processing characterized by static realizations of
low-pass, band-pass, and high-pass filters that used only
gross knowledge of signal and noise spectra. Signal and
noise statistics were not utilized, and most of the imple-
mentations utilized analog technology. It was common-
place to design all-pole IIR filters, such as Butterworth,
Chebyschev, and elliptic designs, and the primary oper-
ations were differentiation and integration. Computa-
tionally, these techniques were characterized by taking order
of N (O(N)) processing time, where N is the number of
sample points of the signal being processed at any given
time. Following the Second World War, many applications,
such as vocoders, that had been implemented in analog
form became so complex that it was difficult to explore the
effect on system performance of the variation of many
design parameters. For this reason, digital signal processing
was introduced at first as a simulation technique, with no
thought paid to its utility in direct real-time applications,
since the technology to support this usage was not avail-
able. During this epoch, there was a more refined manipu-

Manuscript received April 16, 1984; revised January 25, 1985. This
work was supported by AFOSR under Contract F4%20-84Mxll.

The author is with the Research Laboratory of Electronics and the
Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139, USA.

ool8-9219/8S/05~52sol.00 Wl985 IEEE

lation of data spectra using limited knowledge of signal and
noise statistics, such as matched and Wiener filters. While
statistics were utilized, they did not vary with time, nor was
any model introduced for the way in which data were
generated. As time progressed, implementations became
primarily digital, and all-zero FIR digital filters were intro-
duced. The primary operations performed, in addition to
filtering previously mentioned, included convolution, corre-
lation, and efficient techniques for computing the discrete
Fourier transform such as the FFT. Corresponding to these
operations, the computational complexity involved was of
order N2 or Nlog, N, as contrasted to the previous linear
dependence on N. Finally, in the present epoch, lasting so
far for approximately 20 years, sophisticated manipulation
of data spectra using detailed knowledge of signal and
noise statistics has been introduced as exemplified by adap-
tive and Kalman filters. For these systems, statistics can vary
with time, and additional structure was imposed by assum-
ing models on how data are generated, such as the linear
predictive coding model used in speech. As the technology
improved, implementations became realized digitally for
complex systems, taking advantage of the precision, repeat-
ability, high signal-to-noise ratio, and flexibility afforded by
digital systems. Time-varying digital filters were introduced,
and matrix difference equations appeared. Primary oper-
ations were extended beyond the previous emphasis on
convolution and Fourier transforms to matrix-vector multi-
plication, matrix-matrix multiplication, linear system solu-
tion, least squares solution, and eigenvalue decomposition.
Algorithms for these tasks are characterized by order @
processing time, thus putting great demand on effective
computational means for realization of these systems.

From this brief view over the evolving nature of the field,
it is clear that the complexity of digital signal processing
tasks has risen markedly, following not only theoretical
advances, but also the rapid advances in integrated circuit
technology. Clearly, an agent is needed to coordinate the
theoretical approaches with the ambient technology, and
this task has fallen to computer architecture in the large,
but due to the specialized nature of the algorithms per-
formed in digital signal processing, specialized processors
have evolved for most of these tasks. The range of applica-

85 2 PROCEEDINGS OF THE IEEE, VOL. 73, NO. 5, M A Y 1985

tions, originally focused around low-bandwidth speech ap-
plications, has extended dramatically, and has required all
of the performance that contemporary computing systems
can deliver, yet at reasonable cost. The techniques used for
characterizing computer architecture for digital signal
processing are not disjoint from those used for computer
architecture in the large, but the emphasis on various fea-
tures may vary in order to satisfy application requirements.

The performance of digital computer systems has two
contrasting facets. On the one hand, greater computational
throughput can be achieved by improvements in circuit
performance, and this area is largely driven by the technol-
ogy that is available at any given time. It is probably safe
to say that most manufacturers would prefer to achieve
the desired performance level through utilization of con-
ventional single-sequence computer architectures with
state-of-the-art technology. Additional throughput can be
achieved, however, through exploitation of the parallelism
inherent in many digital signal processing tasks. Happily,
many of these tasks provide such a large amount of parallel-
ism that it has only recently been completely exploited
even for algorithms that have been in use for some time.
We will discuss the many means by which this parallelism
can be translated into computational structures, observing
that the combination of aggressive technology and innova-
tive highly parallel architectures can lead to processing rates
in excess of 200 million floating-point operations per sec-
ond (megaflops) for 32-bit operands. This is certainly a
startling level of performance, and one that opens up the
practical utilization of even the most complex theoretical
signal processing approaches.

In this paper, we give a comprehensive overview of those
factors that constrain the nature of computer architecture
for digital signal processing. We start with a fundamental
view of the nature of algorithms, including their means of
representation, and give a view of many of the most signifi-
cant calculations that must be performed, thus revealing
not only the primitive computational means that must be
made available, but the architectural structures that can
utilize them with particular attention to the level of paral-
lelism. Following this view of algorithms, we move on to an
establishment of a general framework for computer archi-
tectures that will allow us to examine the nature of parallel-
ism along data paths together with its concomitant control
in an abstract form that is not encumbered by implementa-
tion details. This framework will then lead to an examina-
tion of a set of techniques that comprise “architectural
exploration,” whereby the system designer may systemati-
cally move over the design space of possible architectures
to select the desired performance level. A comprehensive
categorization of the means for utilizing contemporary in-
tegrated circuit technology with a variety of architectural
styles is given, permitting a broad view of the space of
high-performance computer systems. Next, an assessment
of integrated circuit technology is given, including both
bipolar and MOS technologies, together with their impact
on canonical circuits, interconnect, and packaging. In this
section of the paper, we also give a view of integrated
circuit design, ranging from utilization of off-the-shelf cir-
cuits through semicustom techniques to full custom design,
since there is a great deal of innovation for new complex
special-purpose signal processing integrated circuits, Hav-
ing examined the nature of digital signal processing al-

gorithms, architectures, and supporting technology, we
focus on programming techniques, a factor often ignored in
early designs but now seen as essential for the viability of
modern processors. Next, we examine a variety of specific
designs, ranging from canonical circuit functions through
digital signal processing chips, wafer-scale systems, at-
tached processors, stand-alone programmable machines,
systolic arrays, and linear-algebra architectures. We end by
establishing a uniform view over all of these developments
leading to a reasoned set of expectations for future pro-
gress. This is a highly volatile and exciting area, bringing
together rich theoretical investigations, burgeoning tech-
nology, innovative architectural synthesis, and an unending
demand from applications for improved performance. It is
our intention to convey the way in which these wide-rang-
ing forces are coalescing into a cohesive set of new perfor-
mance strategies, often yielding well over a factor of a
thousand improvement over even the fastest general-pur-
pose machines.

II. ALGORITHMS

In this section we examine the nature of the algorithms
that characterize the tasks to be performed in digital signal
processing. The complementary aspects of architecture and
architectural units, technology, and data and programming
structures, are often seen as posing representation issues
associated with the nature of the particular implementa-
tion, but it must be emphasized that there is a fundamental
problem associated with the representation of algorithms
themselves. From the point of view of system design, it
would be useful to be able to specify and separate what an
algorithm does from how i t is performed. This separation is
sometimes referred to as the competence/performance dis-
tinction, and it remains a discouraging fact that there is no
means available to specify task competence separately from
task performance over a broad range of tasks. Thus for
example, a set of simultaneous linear equations specifies all
of the constraints that have to hold for any solution to
these equations, but it is neutral with respect to indicating
a performance strategy for the solution of these equations,
such as Gaussian elimination. Constraint representations
have been proposed [2] for this iimited class of systems, but
they are not available over other task domains of interest to
digital signal processing. With this observation in mind, we
must proceed with the knowledge that any algorithm to be
used in a digital signal processing system inevitably con-
founds a particular performance bias with the intrinsic
nature of the algorithmic competence. This means that it is
impossible to even state an algorithm without including a
performance bias, a fact which can be readily appreciated
by the examination of any textbook on algorithms. Even the
graphic nature of algorithmic representation carries with it
performance biases, including the use of procedural forms,
such as linear recurrence equations, as well as structural
forms such as signal flow graphs. In this paper, we will
introduce and utilize both equations and signal flow repre-
sentations, choosing each form for its insightfulness where
appropriate. While we will discuss later the possibility of
the use of functional languages, we will utilize here these
more conventional representations, even though we must
emphasize to the reader that a heightened awareness to the

ALLEN: COMPUTER ARCHITECTURE F O R DIGITAL SIGNAL PROCESSING 853

possibility of latent parallelism must be retained in ex-
amining all of these forms.

We start our discussion of algorithmic structures by citing
the forms used for infinite impulse response and finite
impulse response filters. In the case of infinite impulse
response filters, the basic building block frequently pro-
vided is the so-called "second-order section" shown in (1)

y(n) = AY(n - I) + BY(n - 2) + Cx(n - 2)

+ D x (n - 1) + x (.) . (1)

In the most general form of the second-order section, the
two previous values of both the input and the output must
be multiplied by real coefficients. Thus there is an oppor-
tunity to perform as many as four multiplications in parallel,
the results of which must then be summed with the tapped
current input. In the case of finite impulse response filters,
the input sample stream is tapped after a succession of
delays, each tapped value being multiplied by a tap coeffi-
cient, and then all of these products are summed to pro-
duce the output. It i s not uncommon to have several
hundred such taps. Once again, it is clear that the algorith-
mic requirement is to compute a sum-of-products. A variety
of techniques for effecting this calculation will be discussed
in the sequel.

Another fundamental algorithm, used repeatedly in many
applications, is the well-known discrete Fourier transform
(DFT), which is often implem'ented as the fast Fourier
transform (FFT). The calculation to be performed is shown
in (2)

N-1

X k = x n W k , O g k g N - I (2)
n - 0

where. the output values x k are obtained by summing the
products obtained by multiplying the input sample values
x , by the complex value W k = exp(jZn/N)"". These com-
plex products, X,,Wk, can be formed from four real multi-
plies and two adds. Straightforward calculation of the DFT
as a sum of complex products, however, misses much of the
inherent structure of the FFT algorithm, which is best seen
graphically as in Fig. 1. In this representation, an eight-point

FFT, N = 8

f

8 l o g , N BUTTERFLIES

Fig. 1. Eight-point FET, illustrating decomposition into
twelve butterflies.

FFT is decomposed into three (= log2@ vertical arrays, each
of which involves the calculation of four "butterflies,"
which are the modular "heart" of the algorithm.

The butterfly algorithm, shown graphically in Fig. 2, is
expressed by two equations as follows:

u(m) -
v(m)

Fig. 2. Definition of butterfly calculation.

u (m + I) = u (r n) + W ' v (m) (3)

v(m + I) = u(m) - ~ ' v (m) , (4)

The graphical form of the FFT algorithm shows that in the
first vertical array, the inputs to each butterfly are separated
by N/2 points. In the second vertical array, the input
separation is N/4 points, and finally, the separation in the
last array i s just N/8 = 1 point for the N = 8 example
shown here. From this example, we can infer the important
result that an N-point FFT requires (N/2) log, N butterflies,
and that each butterfly requires one complex multiply (four
real multiplies), and two complex adds, as seen from Fig. 2.
The execution of the FFT algorithm involves complex ad-
dress arithmetic to access the desired operands and to store
results, but otherwise involves the accumulation of prod-
ucts as was the case for IIR and FIR digital filters. We have
illustrated the FFT using a radix-two formulation, which
demonstrates the basic principles, although in practice a
higher radix is often utilized.

We have already observed that within an N-point FFT,
(N/2)log2 N butterflies must be calculated, and within the
butterfly, four real multiplies and two complex adds can be
performed in parallel. The graphical structure of the FFT
also indicates, however, that there is additional structural
parallelism that can be exploited. One could, of course,
simply perform all (N/2) log, N butterflies sequentially,
while utilizing the inherent parallelism within each but-
terfly. This is commonly done, and if the execution time for
a butterfly on a contemporary signal processing machine is
approximately 1 ps, then with the addition of address and
1/0 overhead, a 1024-point FFT often takes between 3 and
8 ms. If log, N butterfly processors are available, then the
overall FFT algorithm can utilize one butterfly processor for
each vertical array, and thus each such processor must
compute N/2 butterflies before advancing the data from
one vertical array to the next. Thus only N/2 butterfly times
plus overhead are required. Similarly, if N/2 butterfly
processors are available, a vertical array can be computed in
one butterfly time, so that all of the vertical arrays present
in the FFT can then be processed in log, N butterfly times
plus overhead. Finally, if (N/2)log2 N butterflies are avail-
able, then there is a direct mapping between the hardware
available and all of the butterflies present in the graphical
description. Such an approach involves a great deal of
parallelism, so that for N = 1024, 5120 butterfly processors
must be provided. This would imply the utilization of over
20000 real multipliers, and such a system has not been
built. For N = 16, however, maximum parallelism implies
only 32 butterfly units, and such a system has been recently
designed utilizing wafer-scale integration [3].

At this point it is well to emphasize that the graphical
signal flow graph representation provides a formalism, first
worked out by Mason [4], for modularly representing filters
and other signal processing forms in a formal way. These
graphs can be combined to form larger filters, and they may
also be manipulated according to a signal flow graph alge-
bra to provide alternate but functionally equivalent rep-

854 PROCEEDINGS O F THE IEEE. VOL. 73, NO 5. M A Y 1985

resentations with different performance attributes. This
capability has been exploited to systematically explore per-
formance options in a way which we will describe in the
sequel.

We have already commented in the Introduction to this
paper that many signal processing tasks currently being
investigated require order @ calculations based on a se-
quence of N sample points. These tasks include high-
resolution spectrum analysis, beam forming, and direction
finding. These new techniques provide improvements in
performance by incorporating additional prior information
concerning the spatial or temporal structure of the signal or
noise. Arising from this and similar tasks is a set of new
algorithmic requirements focused around the capabilities of
linear numerical systems [SI. The basic capabilities in such a
system would include as a minimum a) matrix-vector, and
matrix-matrix multiplication, b) matrix inversion via LU
decomposition for positive definite matrices and via or-
thogonal triangularization for general nonsingular matrices,
c) least square solution via either orthogonal triangulariza-
tion or singular value decomposition, and d) Hermitian
eigensystem solutions via the Jacoby or QR algorithm. This
is a broad range of capability, and although numerical
programs have been available for general-purpose com-
puters for these tasks for some time, the need to perform
these substantial computations in real time has given rise to
intensive research into novel architectures with very high
throughput, in the range of 700 megaflops. Fortunately, the
amount of inherent parallelism in these large calculations
allows implementation of these systems in contemporary
technology, and we will examine these solutions later in
the paper.

In the discussion of algorithms so far, the need for basic
functional units such as multiplier-accumulators and ma-
trix-matrix multipliers has been evident. The high utility of
these units points to their inclusion within specialized
architectures for digital signal processing, but it should not
be inferred that the use of these canonical forms is suffi-
cient to perform the entirety of practical algorithms. There
is always a substantial amount of computation that does
not fall nicely into such structures; particularly, tasks involv-
ing heuristic decision making and data-dependent condi-
tionals where a steady streaming of data throughput cannot
be utilized. This means that practical computer architec-
tures for digital signal processing must include a cornpo-
nent that provides general-purpose computing, and it is
highly desirable that this component be easily programma-
ble. In fact, as we shall see, some designers have attempted
to incorporate special-purpose functions within an architec-
ture that appears to the programmer as a normal single-
sequence von Neumann computer. This technique is often
useful for signals in the audio band, but cannot provide a
total solution for very-high-bandwidth signals where the
computational complexity includes linear algebra oper-
ations. General-purpose computational capability is also
needed for the provision of control in large systems. Data
transfers, the invocation of computational processes, and
the partitioning and configuration of computational re-
sources have such requirements, although this control does
not have high demands in terms of specialized computa-
tions and is currently being realized by standard micro-
processors.

Throughout our discussion on algorithms, we have em-
phasized the importance of representations, both for the

underlying competence of the algorithm as well as i t s
performance. it is important to never lose sight of the fact
that algorithms, no matter how they are presented, always
include an inherent bias or even explicit reference to a
particular class of architectures. This fact sometimes clouds
our ability to see the underlying structure of algorithms,
and there is often room for new insights to be generated by
the introduction of new primitive computational forms
within the context of novel architectures. As an example of
this process, we cite recent work by Ahmed and Morf [6] on
the synthesis and control of signal processing architectures
based on generalized rotations. Problems such as ladder
filters, adaptive equalization, and beam forming, have been
mapped into such representations while utilizing CORDIC
(71 primitive processing elements, which have, in fact, been
known for some time. Thus although there is heavy de-
served emphasis on the need for multiplication and accu-
mulation capability within computer architectures for dig-
ital signal processing, rotation algorithms for many of these
tasks may avoid such computations, resulting in acceptable
performance at reduced implementation cost.

We believe that the previous summary has revealed the
most important basic computations needed in digital signal
processing algorithms. These are the forms that signal
processing architectures must focus on, in order to provide
several orders of magnitude improvement over general-pur-
pose machines in performance The trend over the years has
been to progress from scalar arithmetic, through vector
arithmetic, and most recently, to matrix numerical calcula-
tions with the attendant rise in complexity that we have
described. At this time, it is not clear what the next exten-
sion in algorithmic complexity will entail, but designers are
just now beginning to exploit the properties of these al-
gorithms in practical systems so that it will be many years
before the performance of computational systems catches
up with the demands of these currently understood al-
gorithms.

Ill. ARCHITECTURES

The reason why computer architecture is important is
because of the desire for substantial performance levels in
the execution of computational tasks. In this context, per-
formance includes the amount of circuitry and associated
equipment required (space), the speed of execution (time),
and the amount of power d'issipation or total energy re-
quired to perform a given task. Were it not for this in-
sistence on performance, universal machines such as Turing
machines would have been constructed, and the develop-
ment of architectural capability would not have flourished
as it has. It might seem at first that questions of perfory
mance cannot be addressed without strong reference to the
supporting technology. With respect to absolute measures
of space, time, and power, this is unquestionably true, but
it turns out that abstract representations can be introduced
to both exhibit and manipulate parallelism, and hence pro-
vide basic insight into space/time tradeoffs that are central
to any architectural decision. Accordingly, we will first
introduce abstract computation schemata to support the
examination of architectural design alternatives. This will
lead naturally to an examination of various techniques for
deriving alternative architectures, as well as the particular
architectural structures that have evolved in digital signal
processing systems.

ALLEN: COMPUTER ARCHITECTURE F O R DIGITAL SIGNAL PROCESSING 855

We start by introducing the data dependence graph [8].
These structures are directed graphs each branch of which
is unidirectional connecting nodes that consist of operators
(designated as circles) and data cells (designated as rectan-
gles). Fig. 3 shows a data-dependence graph for a parallel
multiplier. The input cells are A and B, and the output cell

7 + 4 y + z

AB = 2'b,A + 2'b2A + 2b,A + b,A

Fig. 3. Data dependence graph for a parallel multiplier. The
length of the multiplier operand is 4 bits.

is designated ab. The data-dependence graph exhibits ex-
plicitly the dependence of node values on other values
present in the graph. The clear implication is that the firing
of a given operator cannot take place until the values
required at i t s inputs have been asserted from other points
of the graph. Furthermore, a data-dependence graph for a
particular algorithm can be constructed by creating a data
cell or an operator in the graph whenever a new result or
computation is called for in the algorithm. By this simple
expedient, no operator or cell in the data-dependence
graph is ever reused on a single computation basis. Thus
every new value computed is given a new data cell, and
every instantiation of an opsrator is given a new operator
node, even i f this operation (e.g., addition) is used re-
peatedly in the given algorithm. It is easy to see that such a
construction technique naturally exhibits all of the paral-
lelism present in an algorithm. It is also not hard to realize
that compilation techniques have been developed in the
area of data flow computer research that translate from an
input functional description to such a graphical data-depen-
dence graph that exhibits the maximally parallel form of the
task to be computed. The data-dependence graph thus
manifests in convenient visual form the fundamental con-
straints that are essential to the underlying semantics of a
variety of different algorithms, all of which compute the
same values. In and of itself, the graph says nothing about
the absolute order in time with which the operators are
fired. That is to say, an execution sequence can be imposed
on the operators of the graph with some freedom as long as
this sequence is consistent with the precedences indicated
by the directed arcs of the graph. This means that any
partial ordering of the finite set of elements comprising the
nodes of the graph can be extended by means of an
execution seque ce to a total ordering.

It is also imp0 I t ant to realize that the data-dependence
graph avoids the introduction of conflict within the descrip-

tion of the computation. Conflicts can arise at a data cell
node whenever the corresponding implementation either
attempts to write two different values into the cell at the
same time, or does not adequately constrain the order with
which two different values from two different sources are
written into the cell. Another form of conflict arises when
the overall system control does not adequately constrain
the order with which values are written into the cell and
subsequently read out. As we will see shortly, substantial
architectural design effort has been expended in pipeline
and multiple functional unit systems to carefully avoid such
conflicts, while still reaping the fruits of parallelism. This is
an important tension in the design process, since whenever
the designer departs from a single sequence machine (the
von Neumann architecture), there is a corresponding in-
crease in the cost of control needed to avoid conflicts at
the registers so that the required precedence relationships
of the corresponding data-dependence graph are main-
tained. For the present, what is most important about the
data-dependence graph is that it provides a means for
revealing all of the inherent parallelism in a task, together
with the essential sequential constraints (i.e., precedences)
that must be maintained by any implementation. It is fur-
ther important to know that data flow functional languages
[9] have been introduced, and that compilers exist for these
languages that can produce the corresponding data-depen-
dence graph. Clearly, there are many implementations of a
particular task that can be mapped onto a single underlying
semantic base prescribed by the data-dependence graph for
these calculations. This is just another way of saying that, in
general, many different degrees of parallelism can be ex-
ploited for a given calculation. We may think of imposing
additional constraints on the data-dependence graph in
order to yield a particular architecture. This may be done
statically, leading to a fixed (at manufacturing time) archi-
tecture, or the implemented architecture may actually be
dynamically reconfigured on an instruction-by-instruction
basis to provide an architecture that changes physically in
time, all the while maintaining strict semantic adherence to
the corresponding data-dependence graph. While this no-
tion may seem excessively abstract, it has been employed
with great success in such machines as the CDC-6600 [IO]
(and its descendants), the IBM-360/91 [Ill, and a number of
signal processing architectures including the SPS-41 [I 21
(and its descendants). The notion that a physical architec-
ture may in fact change in time may seem startling and
even foolhardy, but when it is associated with a well-
formulated control strategy rooted in the data-dependence
graph abstraction, a systematic means for avoiding design
errors is afforded.

It is, of course, possible to cast the familiar signal flow
graphs of interest in digital signal processing into the for-
malism provided by the data-dependence graph. Once
again, the signal flow graph merely records the inherent
precedences required for semantic coherence in the al-
gorithm. The architect can then pick the degree of paral-
lelism desired in the final system, with full awareness of all
the constraints that must be maintained.

From the above discussion, it is clear that, in general,
there will be many possible concrete architectures corre-
sponding to a given algorithmic task. From this observation,
it is natural for the system designer to want to explore the
various architectural alternatives that are consistent with

856 PROCEEDINGS O F THE IEEE, VOL. 73, N O . 5 , M A Y 1985

the underlying data-dependence graph. One may think of
the designer as moving through the architectural space
provided by the possible space/time tradeoffs, possibly
deriving the technological consequences of particular alter-
natives that seem attractive. Much recent work has focused
on the basic tools needed to enable such architectural
exploration, while keeping the initially given function or
semantic content invariant. A simple example of these tech-
niques has been provided by Darringer [I31 and his associ-
ates at IBM. In their scheme, employed in the design of
gate arrays, the initial functional specification (in terms of
logic equations) is naively compiled into a resultant net list
of gates in the target technology. It may be, of course, that
such a design is unsatisfactory, for reasons such as inade-
quate fan-out, excessive circuit area, or inadequate speed.
In order to remedy these defects, a set of local transforma-
tions is provided to the user that manipulates the design in
a way that affects these performance variables. Such a
transformation is shown in Fig. 4.

Fig. 4. Logic transformation used for performance optimi-
zation.

The importance of these transformations is that while
they are introduced to affect performance variables, they
are always guaranteed to maintain the original functional
intent, and thus constitute a form of architectural explora-
tion. These techniques have been generalized into the
context of hardware design language schemas, closely re-
lated to data-dependence graphs, by Miranker [14]. The
transformations introduced in his work are all keyed around
the notion of conflict avoidance, as described above, and
his work provides the theoretical basis for the admissibility
of sequential versus parallel implementations including the
“unwinding” of iterative loops. While the theory for these
transformations is well developed, at present they are not
implemented in any interactive program, but such a facility
can be expected within the next few years.

In a recent thesis by Henrot [15], a new procedure is
introduced whereby a signal flow graph can be transformed
into a factored graph representation via a decomposition
procedure operating on the given signal flow graph. The
purpose of this representation is to provide a basis for
algorithmic specification that is better suited for considera-
tions of hardware implementation. The new factored graph
representation and the signal flow graph are in one-to-one
correspondence, but in the factored graph representation,
the number of multiplications to be performed along the
longest delay free path of the signal flow graph is readily
apparent. The finite graph representation also includes the
corresponding state-variable representation, and permits the
transformation of the topology of a signal flow graph while
controlling i ts implementation features. In particular, the
designer is able to examine directly the degree of parallel-
ism introduced, as well as the effects of finite word length.
The latter follows because, since the factored graph repre-
sentation is a matrix, both combinatorial and parametric
optimization of digital filtering structures are possible, as

well as a complete analysis of its arithmetic properties.
Little experience has been gained with this technique, yet it
appears to be promising and useful over a broad variety of
applications. In another study of the use of transformations,
Cappello and Steiglitz [I61 have introduced the use of affine
transformations to describe intuitively simple space/time
rearrangements. In an elegant way, these transformations
permit an “interchange” between a space dimension and a
time dimension. Using these techniques, Cappello and
Steiglitz have related six of H. T. Kung’s seven designs for
convolution by means of these geometrical transformations,
therefore exhibiting the underlying unity of these ap-
proaches. Lastly, they have shown that all the designs ob-
tained through implementing the same algorithm but with
different geometrical transformations have the same switch-
ing energy, as defined by Mead and Conway [17]. That is,
this energy is just distributed differently in space and time
so that these affine transformations conserve the switching
energy. Once again we see fundamental representational
techniques being used to form an insightful basis for archi-
tectural exploration. In another interesting result, Rao and
Kailath [I81 have shown that it is possible to convert systolic
array implementations for matrix-vector multiplication and
recurrence evaluations into direct form realizations familiar
from the digital filtering literature that have robust numeri-
cal properties. In this case, newer architectural forms are
translated into more traditional formats where numerical
properties have been heavily studied. Once again we see
the utility of providing basic techniques for architectural
exploration in order to yield designs that are not only
appropriate in terms of the traditional architectural mea-
sures but also in terms of practical finite word-length re-
strictions. Lastly, Leiserson, Rose, and Saxe (191 have applied
basic techniques from computer science theory to the tem-
poral optimization of synchronous systems. A new tech-
nique of retiming has been introduced so that a more
efficient circuit can be realized under a variety of different
cost criteria. As the main result, an algorithm is exhibited
for determining an equivalent circuit with minimum clock
period. Contained within this. result is the basic technique
for manipulating register locations while preserving seman-
tic invariance and the timing properties of the functional
elements.

From the results cited above, it is clear that a variety of
new and useful results are being developed that can serve
as the basis for a disciplined exploration of the architectural
space presented to the system designer. To date, these
results have appeared as separate studies, and there is no
unifying basis through which all of these results can be
coordinated. There seems to be no principled reason, how-
ever, why such a unification cannot be achieved, and such a
system together with an interactive implementation may be
expected within the next five years. Not only would such a
contribution be of immense value to the design of high-
performance architectures for digital signal processing, it
would also serve as the first concrete basis for the codifica-
tion of many results in computer architecture, which have
only been intuitively appreciated by experienced designers
in the past. Despite the lack of such a global theory,
however, it must be emphasized that the presently cited
results are of substantial utility today to the system design-
er, and that they provide a principled, if restrictive, aid of
substantial value to the design process.

ALLEN: COMPUTER ARCHITECTURE F O R DIGITAL SIGNAL PROCESSING 857

Having established a general abstract framework for the
exhibition of parallelism in computer architecture, and also
illustrated several means for manipulating a particular archi-
tecture into other forms with different utilizations of space
and time, we now examine particular architectural struc-
tures that have been used for high-performance computer
architectures. Many of the techniques that we will discuss
and illustrate are of general value for computer architecture
in the large. This means that although many of these fea-
tures assume great importance for digital signal processing
architectures, that they are also of general utility and can be
expected to appear in many high-performance general-pur-
pose designs.

As a point of departure, we consider the single-sequence
von Neumann machine. In this classical architectural form,
instructions are executed one after the other with little or
no apparent utilization of parallelism. Each instruction must
be fetched and decoded, and then the needed operands are
brought into the processor unless they are already part of
the current processor state. The selected operation is then
performed, and the result is either left as part of the new
processor state or returned to the main system memory.
Instructions are executed sequentially from memory unless
a skip or jump, often conditionally related to results
achieved in the processor, redirects the instruction se-
quence to a different part of the instruction memory. It is
also usually the case that von Neumann machines contain
both the program instructions and all relevant data within
one and the same memory. In fact, during an era when the
available technology was severely restricted von Neumann
considered i t an advantage that instructions in memory
could be altered by processor activity. This general
von Neumann model is familiar to almost all programmers,
and it is not surprising that many designers of computer
architectures with greater parallelism have chosen to arrange
the architectural structures in such a way that the ma-
chine behavior appears as that of a single-sequence
von Neumann machine to the programmer, even though a
great deal of parallelism may be utilized to provide improved
performance. It is also convenient to categorize architec-
tures in terms of the number of addresses specified in an
instruction. This number can range from 0 (stack machines)
up to 3 and even 4 i f the address of the next instruction is
included explicitly within each instructig. There appear to
be no high-performance stack architectures used for digital
signal processing, and single-address machines are a rarity
in this application area. It should not be surprising that
three-address architectures are prominent since in a single
instruction, two reads from memory and one write to mem-
ory can be specified. This capability would not be very
important for high-performance systems were it not for the
fact that all three of these interactions between the
processor state and the main memory can take place simul-
taneously in a well-designed architecture. The way in which
this is usually achieved is through pipelining, a well-devel-
oped technique which we will now illustrate.

In pipelining, a task is broken up into several sequential
segments that can be executed one after the other. Fre-
quently, an analogy between pipelining and assembly-line
production is made which emphasizes that at each stage of
the pipeline, a particular specialized computation is per-
formed on the data streaming through. For example, a task
such as multiplication might be broken up into say five

sequential steps. These subtasks are generally chosen for
their nearly equal execution time as well as the narrow
dispersion in their execution time as a function of the
differing data presented to them. If each of the five sub-
tasks can be performed in n nanoseconds, then clearly a
total of 5n nanoseconds will be required to perform one
multiply. This time is referred to as the latency of the
overall multiplier, but the rate at which new multiplications
can be initiated, namely n nanoseconds, is often of greater
interest when a continuing stream of multiplications must
be performed. It cannot be overemphasized that pipeline
systems yield high performance only when such a continu-
ing stream can be maintained, and that any deviation from
this practice or interruption of this computational flow will
cause the system to revert to a performance level worse
than what would be obtained if no pipelining were imple-
mented. This phenomenon happens for two reasons. Firstly,
pipelines require the insertion of pipeline registers at the
end of each subtask, so that the total time for execution of
the overall task is greater than if one overall combinatorial
network were used, as in an array multiplier. The second
way in which pipelining can lead to inferior performance, is
when the data flow must be interrupted and the pipeline
"emptied out" before additional computations can con-
tinue. For this reason, architectures and algorithms that
permit a heavily pipelined stream of computations to be
interrupted by input/output activities, or which must re-
spond to data-dependent conditionals, can often lead to
poor Performance. Lacking these disturbances, however,
pipelined architecture can deliver a very high level of per-
formance, so this technique is in widespread use in digital
signal processing architectures.

In order to illustrate the techniques utilized for pipelin-
ing, we have elected to describe a high-performance design
developed at the MIT Lincoln Laboratory [20]. This design
has evolved from experience with several previous architec-
tures intended for signal processing, and follows the prac-
tice of striving to make the architecture appear to the
programmer as a single-sequence von Neumann machine.
Behind this virtual facade, a great many architectural tech-
niques have been utilized to provide a high degree of
parallelism and throughput. The architecture for this ma-
chine is shown in Fig. 5.

There are three buses to interconnect the data registers,
ALU, and other functional units as well as three additional
buses to connect the data registers to the data memory. The
instruction memory is separate, so that instructions can be
accessed strictly in parallel with other processor and data
memory activities. This architecture clearly contemplates a
staging philosophy in which operands are brought first from
the main data memory into the data registers and then
utilized by the ALU to perform specific functions. Results
are then either utilized further within the processor or
returned to the data memory. The architecture is also clearly
of the three-address variety, being motivated by the fre-
quent need to deliver two operands to the ALU and return
one result to the register file, although there is also provi-
sion for loading immediate data from the instruction word
onto the B bus. It is important to point out that two
operands can be read from the register file simultaneously.
This capability is often achieved by the simple expedient of
duplicating the register file, although in custom VLSl de-
sign, it is not difficult to design a register file with memory

858 PROCEEDINGS O F THE IEEE. VOL. 73, NO. 5, M A Y 1985

Fig. 5.

E B U S C BUS

k
D BUS

COND’L COND’L
CIJ. U.P.

r f l 8 I 24 1 t~ I t ,
I

I
I OUTPUT

INDEX I INDEX
REGISTERS
(8 I 24 bnl DATA

REGISTERS I32 I 24 bml IBk x 24 bnl

ALU REGISTERS -----------. INCREMENT REGISTERS MEMORY
AND DATA

181 13bml I REGISTERS

1 AND
SPECIAL

(8 # 24 but
ALU INPUT

I
I 18 I 24 btrl
I 1 A

24,’ ,‘24 24,’
I # A I I “ t t C,

ADDRESS DIRECT
ADDRESS

INPUT

t v v 7
A 8us

i

F BUS B BUS t
IMMEDIATE
DATA

Detailed architecture of Lincoln Laboratory high-speed processor.

cells that have two parallel access lines. For most situations,
it is contemplated that address arithmetic including index-
ing will take place in parallel with other processor activities,
and indeed this is the case for the present design. Address
increments other than one can easily be provided, and one
index register is equipped with bit reversed increment capa-
bility for FFT radix-two implementations. Address arithmetic
could, of course, be performed through the ALU, but this
would incur a timing penalty, and for most practical prob-
lems, the address arithmetic can be hidden completely
within the overall processor cycle. We will return to a
consideration of input/output and special registers later in
the discussion, and will now focus our attention on the
nature of pipelining in this machine. For instructions utiliz-
ing the ALU, Fig. 6 indicates the data flow sequence that is
accomplished during each instruction. As shown, two reads
from memory into registers can be performed, an operation
can be performed on two operands within the ALU, the
result of this operation can be returned to one of several
registers, and finally the contents of a register may be
written back into the main data memory. With the machine
properly pipelining, a continuing stream of these complex
operations can be performed once every 40 ns using ECL

M, = MEMORY LOCATION a

RI = REGISTER B
I = INDEX

J = INCREMENT

B = I/O REGISTER

S = SPECIAL REGISTER

Fig. 6. Single instruction data flow sequence for Lincoln
Laboratory high-speed processor.

100K technology. Not only is this a large number of sub-
tasks to be performed within such a short time, there are
clear sequential dependencies that would make such a
speed highly difficult to achieve without the utilization of
pipehning. In Fig. 7, an instruction sequence is illustrated
that shows all of the parallelism that can be introduced
within each machine cycle.

Successive 40-ns cycles elaborate horizontally, while the
evolving instruction stream proceeds vertically downward
in the illustration. Notice that there are several cycles
needed for each instruction. First, the instruction is fetched,
then decoded, then data are read from the main memory to
the registers, then the ALU operates on re ister operands,
returning its result to a register, and finally t k contents of a
register may be written back into the main data memory.
Thus five 40-ns cycles are utilized to perform the complete
instruction, although the issue rate for new instructions is
one every 40 ns. Thus the utilization of pipelining has led to
a five-to-one apparent speedup. One of the largest difficul-
ties in implementing this style of architecture involves con-
flicts between r&& and writes to the main data memory.
In order for thgmachine to function as if i t were a single-
sequence mach”!ne, it is imperative that data read back into
the data memory from a register can be properly read by
the next instruction. An examination of Fig. 7 will show that
a write to the data memory in instruction I actually takes
place after reads from the data memory in instruction I + 1,
In order to provide for correct functioning, it is necessary to
introduce a “write queue” that can contain two data words.
When a word is to be written from a register into the data
memory, it i s first placed into the write queue along with its
intended address in the data memory. The system timing is
implemented in such a way that i f such data are required in
the next instruction, they are simply obtained from the
write queue directly rather than from the data memory
proper by means of address compare logic. It also turns out
that this scheme avoids any conflict between simultaneous
data reads and writes in the data memory, and that the
proper overall sequencing is maintained. Were this not the
case, it would be necessary to introduce an additional cycle

ALLEN COMPUTER ARCHITECTURE F O R DIGITAL SIGNAL PROCESSING 859

for memory writes, or provide for variable-length instruc-
tions which are highly undesirable from the system control
point of view. Physically, the machine is configured so that
data reads from the memory are performed within a cycle
before data writes may be performed. This arrangement is
satisfactory except when the read and write addresses are
identical, in which case the write queue must be utilized by
the read logic. Additionally, a comparison must be made
whenever a write is to be made into the memory to see if
there is a datum in the write queue destined for the same
address. If so, i t must be overwritten in order to maintain
functional coherence. It is interesting to notice how the use
of additional buffering and logic maintains a uniform
processing sequence and how writes and reads appear to
overlap correctly from a functional point of view. Special
hardware for conflict avoidance is a well-established tech-
nique, and the reader will be well repaid for any effort he
spends studying such classic architectures as the CDC-6600
[IO] (and its descendants) as well as the IBM 360/9l [Ill.
Both of these machines are heavily pipelined, although they
also utilize multiple functional units which we have not yet
discussed. Tagging schemes (in the Lincoln Laboratory ar-
chitecture addresses serve as the tags) are introduced to
keep track of the operands and results as they circulate
within the processor. One may think of all of these ar-
chitectures as maintaining dynamic data-dependence graphs
whereby the required precedences indicated by the al-
gorithmic functionality are constantly maintained on an
instruction-by-instruction basis. This point of view is devel-
oped in detail by Allen and Gallager [8], where they show
that the conflict-avoidance techniques used by the CDC
6600 and the IBM 360/9l are conceptually identical al-
though they vary vastly in implementation details and in the
way in which they have been described by their designers
in the literature.

The previous example has shown the great utility of
pipelining in high-performance architectures. Careful de-
sign can lead to an architecture where the programmer
does not have to consciously consider the need to maintain
the pipeline stream on a cycle-by-cycle basis. Serial arith-
metic forms another kind of pipelining which has been
very popular in many implementations of digital signal
processing tasks. The desirability of bit-serial approaches
varies greatly with the target technology and with the

intended application. We will discuss these techniques later
when we examine custom integrated circuit architectures
for signal processing tasks.

Another kind of architectural structure, often used in
conjunction with pipelining, is a set of multiple functional
units. At the minimum, a simple arithmetic logic unit is
needed in every processor. For digital signal processing,
however, it i s common to utilize specialized functional
units in order to increase performance. Thus for example,
floating-point add and floating-point multiply units are
frequently introduced as distinct specialized elements, and
these are commonly pipelined. We will discuss examples of
this usage in the sequel. There are two major reasons for
introducing multiple functional units. On the one hand, it
has long been recognized that specialized architectures can
provide superior performance when contrasted with gen-
eral-purpose units. For example, in earlier computers, multi-
plication was often performed under microcode control by
means of repeated shifts and adds. Yet in signal processing
computers, it is common to have array multipliers which,
while costly in space and power, provide high-speed per-
formance by virtue of a specialized architecture. Thus archi-
tectural specialization is the first reason for the introduction
of multiple functional units. The second reason for their use
is the advantage afforded by parallelism. If several func-
tional units are available, then the sequential stream of
instructions can be dispatched to the various units to take
advantage of their specialized capability. An early example
of this practice was the CDC 6600 [IO] which has ten
functional units that can operate in parallel. Of course,
when tasks are dispatched to these units in parallel, it is
essential to preserve the intrinsic precedences of the al-
gorithm being executed. For this reason, additional control
complexity must be introduced to make sure that no con-
flicts arise. For example, if the results of one functional unit
are needed as an input to another functional unit, then this
latter functional unit must be delayed until the appropriate
operand is available. This means of conflict resolution is not
unlike the kind of capability we previously described in
connection with pipelined reads and writes from memory.
Once again, the control logic must provide a consistent
dynamic data-dependence graph at all steps during the
algorithm execution. The reader will also find that the IBM
360/9 [Ill is yet another example of conflict-free manage-

860 PROCEEDINGS O F THE IEEE, VOL. 73, NO. 5 , M A Y 1985

ment of multiple functional units, in addition to the heavy
pipelining used. In that scheme, explicit tags are used to
keep track of the local data within the processor that
circulate among the functional units. While we cannot
elaborate on this approach in this paper, we point out that
recent research in tagged token data flow architectures [21]
is based on exactly the same principles, although the com-
plexity of the control and functional apparatus is consider-
ably greater. As the degree of technological integration
increases, there may be less apparent utilization of multiple
functional units. This is due to the fact that much logical
and memory capability that previously required hundreds of
separate chips on possibly multiple boards can now be
implemented on one custom integrated circuit. We will
characterize this chip technology later in this paper.

Another kind of architectural structure that is of consider-
able interest is a specialized case of multiple functional
units. This is the case of multiple processing elements,
where each processing element is identical to all the others.
This situation arises naturally in systolic forms combined
with pipelining, and architectures for this purpose have
been built for convolution [22] and dynamic timewarping
[23]. Another example is the utilization of many identical
processors in highly parallel algorithms like the FFT. The
control for these processors varies. In some cases, a single
instruction form is broadcast to all of the processing ele-
ments acting in parallel, whereas in other more general
cases there i s more local autonomy, although at well-estab-
lished intervals synchrony among the processing units must
be established [24]. There is no question that architectures
for digital signal processing will continue to evolve in this
direction, taking advantage of the ability to fabricate a large
number of processors and to provide for high-speed local
interconnect between them. Current technology is easily
able to support the use of literally thousands of such
processors when the available parallelism makes this sensi-
ble. We must emphasize that the major problems in these
architectures are concerned with control and communica-
tion. It i s not unusual to see proposed designs where the
communication costs in time are ten times as great as the
local processing costs in time within each processor. Fur-
thermore, as was observed in the case of pipelining, the
control complexity for highly parallel systems grows very
quickly with the number of processors, and there is a
natural tension between the amount of parallelism that can
be utilized and the flexibility with which one can change
from one computation to another. There is certainly room
for much additional research in this area. In the near future,
however, we can expect to witness the successful use of
vast amounts of parallelism only for highly specialized tasks.
Even for these tasks, such as large FFTs, effective perfor-
mance can be expected only if the start/stop transients
associated with the control of various processes has a small
cost with respect to the high bandwidth throughput ex-
pected for this specialized task.

We now turn our attention to the role of memory within
high-performance computers. These memories are often
specialized as to function. We have already seen that sep-
arate program memories and data memories can easily be
provided, and it is not unusual to provide additional mem-
ory for static coefficients. Memories are also specialized in
terms of speed. Thus we expect to see large data memories
that are slow coupled with fast register files or cache

memories. In fact, it is a main task of the computer architect
to keep in balance the overall data flow by matching data
transfers to the speed with which they can be utilized by
the processing elements. There are many techniques utilized
to provide high data transfer rates from relatively slow
memory elements. An obvious technique is to increase the
bandwidth of the number of bits that can be transferred in
parallel from such memories. Thus a high-performance
memory system might transfer 128 or 256 bits in parallel to
appropriate registers in the processing elements, although
this presents substantial difficulties in time skew across the
large number of lines. Another technique is the use of
interleaving. If data are to be accessed from or to sequential
memory locations, then the memory may be broken up into
a number of interleaved units such that accesses to these
units are overlapped in sequence. Thus for example, the
CDC 6600 provides 32-way interleaving to a very slow but
large memory. Interleaving often works well with large
vectors or matrices, but when the processor must perform
random accesses from memory, the overall speed drops to
that associated with a single-memory access. Nevertheless,
as the number of linear algebra related operations grows
within digital signal processing, interleaving may enjoy a
larger utilization than at present. When multiple reads from
possibly different locations of a memory are needed, du-
plication of the memory may lead to substantial perfor-
mance improvements. Such an approach, of course, re-
quires that writes be made to both memories, but for small
register files this is a well-established technique and is
particularly appropriate in architectures that utilize three-
address instructions, where two of the addresses denote
two operands to be supplied to the ALU. Another tech-
nique for matching speeds is the use of cache memory
which is based on the locality principle, for both instruc-
tions and data. In our example of pipelining, one may think
of the write queues as small caches, and in larger machines
it i s not unusual to provide large data caches as dictated by
the technological capability. For instruction streams, when
there i s a tight loop, it may be possible to keep the entire
set of instructions associated with the loop in a high-speed
cache memory, leading to very high performance. Multiple-
access ports to a memory are also utilized, particularly
when it is desirable to maintain simultaneous input/ output
with computing. This is almost always the case, since the
overall system must stage new data into the processor
memories for a succeeding calculation while the present
calculation is still being executed. Also, result data must be
removed from the processor memories to other staging
areas for storage or display. As the technology has evolved,
there has been a tendency to increase the amount of fast
memory associated with the processors. The amount of this
fast memory should not be increased without limit, since at
some point the ability to communicate with slower mem-
ories will determine the overall performance level. Most
new designs are selecting memory elements that provide
both high speed and improved capacity, but in a way that is
consistent with the entire memory hierarchy of the system.
There is no substitute for careful timing simulation of an
overall system utilizing the algorithms of interest to find
where the memory transfer bottlenecks reside. Once these
difficulties are appreciated, it i s usually possible to use one
or more of the techniques that we have mentioned to
alleviate the problem.

ALLEN: COMPUTER ARCHITECTURE F O R DIGITAL SIGNAL PROCESSING 861

In our earlier mention of multiple processing elements,
our focus was directed to those processors acting directly
on data as part of the algorithmic execution. All high-per-
formance systems, however, require additional processors
for control. We have already seen that the processing
needed to maintain conflict-free operation and to balance
data flow through the several memories of a system can be
substantial. The greater the degree of parallelism, and the
possibility for introducing dynamic data-dependence capa-
bility, the more control complexity can be expected. Fur-
thermore, control processors are necessary to perform ad-
dress generation and for decision making resulting from
data-dependent conditionals and hardware or software
malfunction. What is clear is that modern high-performance
architectures, particularly those providing several tens of
megaflops speed, require several different levels of control
that must be coordinated through a separate processor.
While earlier machines often provided this control directly
in terms of random logic, it is much more common to see
this control embedded in a well-recognized processor that
runs part or all of the computer operating system. Contem-
porary microprocessors are often used for this purpose, as
they provide adequate speed and performance without the
necessity to design special-purpose logic for each computer
system that is designed. Clearly these control processors
can execute in parallel with other elements, and unlike the
data flow processors, they utilize very little pipelining in
order to retain a degree of flexibility to respond to a variety
of interrupt situations.

The last kind of architectural structure that must be
mentioned concerns input/output. Here, of course, we
must be concerned with not only the amount of data to be
transferred, but also the speed of the transfers. In some
architectures, for overall throughput reasons it is common
to transfer an entire block of data to the specialized
processor and then return the results as a block later to the
host processor. On the other hand, relatively low-speed
plug-in boards that are used to enhance particular calcula-
tions, such as FFT, often use a direct memory access con-
nection so there is no block transfer of data from the host
computer to any processor memory. This approach obvi-
ously cuts down the need for such memory in the processor,
and makes sense when the data can be accessed from or to
the host machine at speeds that are well matched to the
attached processor. Large systems for digital signal
processing computing often have several input/output
processors associated with them, and although in the past
these were often a single physical processor time multi-
plexed to provide several virtual processors, at present the
technology permits the provision of several separate physi-
cal processors for input/output. There are several other
interesting aspects of architectural style having to do with
input/output. One has to do with the particular instruc-
tions utilized in the processor for input/output. In older
practice, it was common to have specialized instructions for
input/output, yet in recent practice there has been a tend-
ency to provide specialized registers for the control of
input/output that reside within the normal address space
of the processor. In this way, 1/0 operations can be con-
trolled and monitored through utilization of the standard
instruction set of the machine. Another important aspect of
architectural style has to do with the use of flags versus
interrupts. When an interrupt is received, at least a partial

state save is necessitated, and in a complicated highly
pipelined machine, the amount of control needed for re-
sponding to an interrupt may be very high indeed. For this
reason, in large complicated machines no interrupts have
been provided, so that the program must be carefully for-
mulated to inspect flags under program control at ap-
propriate intervals. It seems clear that programmers would
prefer to deal with interrupts, since there is a well-estab-
lished software methodology for their utilization and also
because any machine that provides interrupts almost inevi-
tably provides program flags when they are desirable. It is
usually the computer architect and the digital designer that
prefer the use of program flags to interrupts, due to the
control complexity introduced in highly parallel pipelined
machines. Nevertheless, as control becomes more regu-
larized through utilization of programmed control proc-
essors, interrupts are becoming more predominant in newer
designs.

From the discussion above it is apparent that an aggres-
sive architecture for digital signal processing may provide a
large variety of architectural structures to enhance perfor-
mance. These will range through pipelining and special
hardware for conflict avoidance, through multiple func-
tional units and specialized processing elements coupled
with a well developed memory hierarchy that can support
continued high-speed computation over a broad class of
algorithms. Processors and memories are often duplicated
in order to provide speed, and specialized processors are
introduced for address calculations, generalized control,
and input/output. High-performance computer systems for
digital signal processing-utilize all of these techniques cou-
pled with aggressive technology. They provide, as we shall
see, a literal tour de force of architectural techniques, and
since we have noted the increasing complexity of the tasks
undertaken in digital signal processing, we can expect the
industry in this field to continue to exploit all possible
architectural and technological techniques for high-speed
performance.

IV. TECHNOLOGY

Of all the factors that influence computer architecture,
technology i s without question the most important. It is not
difficult to show how important architectural ideas, such as
general register files, became significant only when the
appropriate enabling technology was available, and that
other ideas, such as multiple specialized processors took on
reduced implementations through techniques such as time
multiplexing until the technology made completely distinct
multiple processors economically viable. Not only i s tech-
nology an incredibly important factor in the determination
of architectures, it is an exceedingly robust and volatile
area. it is probably impossible to overemphasize how fast
technology is changing, so that in a very real sense, any
commercially available machine is technologically obsolete.
For example, in the memory area the number of bits per
integrated circuit is increasing at a rate of 70 percent
per year, and the logic density available (number of gates
per unit area) is increasing by 25 percent per year. The area
of individual integrated circuit die is increasing by 20 per-
cent per year, and the power delay product associated with
contemporary processes is dropping by a factor of two each
year. The main negative factor associated with this rapid

862 PROCEEDINGS O F THE IEEE, VOL. 73, NO. 5 , M A Y 1985

growth in technology is that the cost of design has been
rising by at least 40 percent a year, and we will address this
factor later in this section.

The factors that need to be addressed with respect to
technology include size, speed, power, heat dissipation,
packaging, and input/output capability. At the circuit level,
IC technology can be grouped by device type and circuit
design style. Device types include bipolar and unipolar
transistors, as well as Josephson Junction devices. Bipolar
transistors are utilized in the ubiquitous TTL technology, as
well as emitter-coupled logic, the latter being the highest
speed circuit style in general use within computer systems.
Unipolar devices are more commonly referred to as MOS
transistors, and these are available both as p-channel de-
vices (PMOS) and n-channel devices (NMOS), or combined
together in a low-power circuit style called CMOS. TTL
circuits provide gate delays of 2-5 ns, together with modest
power dissipation. For all but the highest speed applica-
tions, these circuits are in common use, and it is possible to
obtain substantial logical or register memory capability on
such a chip. When all-out speed is required, there is no
substitute for emitter-coupled logic, and several important
signal processing machines utilize either the 10K or faster
100K series ECL circuits. While these circuits are very fast,
the density of integration on each chip is not as high as for
TTL, and the attendant power dissipation can rise to several
watts per chip, leading to special cooling needs. Among the
MOS circuit styles, NMOS provides the densest and fastest
circuits, but often involves static power dissipation that can
limit the amount of circuitry on an individual chip. All
contemporary large dynamic RAM memories are NMOS,
and most high-end microprocessors are currently made in
NMOS technology. Due to many advances in processing,
however, CMOS is growing rapidly due to its low power
dissipation, coupled with increasing density and speed.
Increasingly, signal processing chips such as multipliers and
general-purpose signal processors are being implemented
in CMOS technology. With CMOS, it is now possible to
achieve gate delays of less than 2 ns and large (64K) static
RAMS are currently available in CMOS.

In addition to the device type and circuit style, it is
important t o consider the design style associated with
different technologies. Most engineers are familiar with
off-the-shelf small-scale and medium-scale integration
components, but semi-custom and full-custom techniques
for design are becoming increasingly popular. For example,
gate arrays provide very fast design turnaround together
with low risk and substantial performance improvements in
many cases. Gate arrays are available in TTL, ECL, and
CMOS technologies, and up to IOOOO gates can be placed
on a CMOS array while up to 3500 gates can be placed on
an ECL array. Both of these figures can be expected to grow
rapidly in the near future. Standard cell capability provides
even greater density than gate arrays, and hence &eater
functionality per chip, through a higher degree of customi-
zation within each functional cell on the chip. The cost and
risk of this approach is higher than for gate arrays, and the
turnaround time is longer, but it provides performance that
begins to approximate that found in a good custom design.
Finally, there is full-custom design. The phrase ”full custom”
needs careful interpretation, since many will imagine that
each and every transistor on a full-custom design must be
individually specified by the design engineer. Since there

are custom chips in production containing over 500000
transistors, this is clearly an impossible task, and indeed, a
number of powerful techniques are used to cut down the
design effort while providing the advantages of fully custo-
mized circuitry. In the digital signal processing area, per-
haps the most interesting development has been the recent
appearance of specialized function generators for those
complex cells that are frequently used in signal processing.
For some time it has been common to utilize program logic
array generators, and these useful programs can be thought
of as specialized silicon compilers transforming an input
functional logic specification into a target layout architec-
ture of a very prescribed sort. Borrowing from this idea,
specialized compilers, each with its own highly optimized
target layout architecture, have recently been developed.
For example, specialized multiplier compilers now exist [25]
that convert two integers, namely the length of the desired
multiplier and multiplicand, to a complete layout using an
array of carry/save adders together with modified Booth’s
recoding. Such a layout is highly regular and is very close in
efficiency to that obtainable by an optimized manual de-
sign. Shortly such techniques will be extended to floating-
point units, so that the designer can merely specify the
floating-point function (e.g., multiplication or addition) to-
gether with the size of the exponent and the size of the
mantissa desired, and obtain the final layout of a highly
optimized cell for this purpose. These techniques fit into an
overall perspective on design whereby the user initially
specifies a high-level functional specification of the overall
chip, which is then compiled into a fully parallel data-de-
pendence graph. An exploration phase follows, such as we
have described earlier in this paper, to pick out the degree
of parallelism appropriate for the designer’s intentions. The
result of this phase will be a block diagram containing
components which must then be realized by the kinds of
silicon compilation processes that we have been discussing
here. In this way, the overall chip is not obtained through a
single compilation process, but instead the design engineer
guides the overall process to a level where expert function
generators can produce the large amount of layout detail
needed for the finished chip. Of course, placement and
routing capability [26] must also be coupled to this strategy
in order to produce a final design. From this view, it should
be clear that modern “full-custom” integrated circuit de-
sign does not involve the substantial penalties in time and
effort required by earlier custom design techniques. In
effect, the experience of expert designers is being encapsu-
lated into procedural forms of knowledge representation
that can generate specific forms of these circuits upon
demand. This means that specialized signal processing chips
with a high degree of performance can now be generated
much more easily than heretofore. It is also important to
emphasize the use of high-level compilation and proce-
dural techniques in the assembly of pre-existing compo-
nents on a chip. For example, Denyer [27] has recently
introduced a compiler for signal processing tasks utilizing
serial arithmetic and NMOS technology. Designers with
little integrated circuit design experience have found it
possible to design filters and FFT modules utilizing this
compiler in a few weeks time. The compiler assembles the
needed modules, places them, and routes them all to-
gether, while providing simulation capability to provide
assurance that the resulting circuit provides the intended

ALLEN. COMPUTER ARCHITECTURE FOR DIGITAL SIGNAL PROCESSING 863

functionality. The resulting layouts are not highly optimal,
but they are indeed very useful, and in the next few years
we can expect to see continued development and optimiza-
tion of these techniques.

No discussion of technology for digital signal processing
would be complete without a mention of contemporary
performance for the most important canonical circuit forms.
Certainly that task which has received the most design
attention is multiplication [28], and it can be viewed as
providing a tour de force of architectural space/time trade-
offs. Multiplication can be regarded algorithmically as con-
sisting of repeated shifts and adds of the multiplicand as
specified by the bits of the multiplier, and this technique is
frequently implemented. On the other hand, there are a
wide variety of other techniques, including avoidance of
multiplication, which are frequently used. In filter imple-
mentations where the coefficients are fixed, it is sometimes
worthwhile to merely provide for the required additions
within a multiplication, particularly when the number of
ones in the coefficient multiplier is relatively small. Tech-
niques have been introduced for reducing the number of
such specified additions within a multiplier subject to the
functional specification of the filter containing the multipli-
cation, and many signal processing chips, including those
utilized for finite impulse response filters, provide for no
explicit multiplication. When more general capability is
required, however, a complete two’s complement multi-
plier is generally provided, using either serial arithmetic or
parallel arithmetic. For some time there has been a raging
debate as to the goodness of serial versus parallel ap-
proaches. Advocates of the serial approach cite the small
area required, interconnect simplicity, high throughput, and
low power dissipation. On the other hand, critics mention
the difficulty of performing data-dependent conditional
operations in serial arithmetic which is inherently very
deeply pipelined, and ascribe high importance to the inter-
connect problem only when such lines must go off-chip.
Certainly there are many chips available with wide busses
on-chip, and these do not consume an excessive area in
most applications. Parallel multipliers are preferred by those
desiring high speed with minimum latency in throughput.
While serial techniques have undoubtedly proved to be
very useful in many applications, improvements in technol-
ogy and circuit design are leading to very fast and dense
parallel multipliers, which will occupy only a very small
fraction of a chip. While contemporary designs provide for
16 X 16 NMOS multipliers operating in well under 200 ns,
new results can be expected shortly that provide this same
functional capability in approximately 50 ns. Not only will
the speed be obtained, but the capability will be provided
in low-power CMOS technology. This is a highly competi-
tive business with several manufacturers continuing to pro-
vide highly aggressive offerings. It is perhaps well to mention
here the possible use of gallium arsenide as integrated
circuit material rather than silicon. Here again, a huge
debate arises over the virtues of gallium arsenide as op-
posed to silicon. It is our belief that silicon will continue to
dominate in a major way although impressive laboratory
results with gallium arsenide have been measured. For
example, a gallium arsenide 16 X 16 multiplier operating in
11 ns has recently been reported [29], and designs are
underway to achieve 32 X 32-bit multiplication in gallium
arsenide within 1 5 ns. These are indeed very impressive
times, although it must be emphasized that they are not

commercially available, and probably cannot be expected
within the next five years.

We turn now to packaging. This is an exceedingly im-
portant area, and it is probably not an overstatement to say
that as much technological innovation has gone into
packaging in recent years as into device and circuit design.
As the amount of circuitry increases on a chip, the need for
input/output circuitry rises accordingly, so that the need
for new packages with large numbers of pins has been
increasingly felt. Without question, the most impressive
technology in this area has been developed by IBM through
a combination of its introduction of “solder ball” technol-
ogy with multilevel ceramic substrates [30]. In conventional
integrated circuits, connections are made from the chip to
the package through bonding pads around the periphery of
the chip. In the IBM approach, however, pads can be
provided anywhere on the chip, and connections are made
to the package by means of very small solder balls, thus
making for a much more flexible and dependable
input/output capability from the chip to. the package. This
interconnection strategy is then coupled with up to 33
levels of interconnect between ceramic layers, where the
conductors are provided by thick-film paste. When one
remembers that the speed of light in air is approximately 1
ns/ft, and that contemporary ECL gate delays are of the
order of 350 ps, it is easy to see why such packaging
technology is so important. It also turns out that this tech-
nology is fairly easy to adapt for cooling purposes, since the
entire bottom of the chip is available for contact with
heat-exchanger materials. Signal processing machines are
now beginning to appear with ECL gate arrays dissipating
approximately 4 W [31] that require carefully designed forced
air cooling, so that these packaging considerations will
become increasingly important in the years ahead. It is also
important to mention here that the engineering design of
large high-performance digital signal processing systems
requires large capabilities in simulation and verification.
Not only is logic simulation required, but very careful
timing verification must be provided which takes into
account the characterization of the packaging. Design
software is also available for dealing with cooling require-
ments, even to the extent of pinpointing hot spots on
projected chip designs. The thrust of many of our com-
ments here has been to show that the design of large
high-performance digital signal processing systems can no
longer be regarded as a manual exercise guided by the
accumulated skill of the engineer. The reason is that the
level of complexity is simply too large for this previously
utilized design style. Complexity of functionality and design
has forced designers to think carefully about the represen-
tational levels that are important to control in design, and
to provide simulation and verification tools appropriate to
these concerns. This is now an active area of research, and
one where new advances are appearing at frequent inter-
vals.

Another general trend that is important to note is the
increasing utilization of hybrid techniques in both technol-
ogy and circuit types. In previous years, we have been
accustomed to seeing restricted classes of circuits imple-
mented in one technology made available, such as arith-
metic logic unit capability and T T L technology. As the
amount of capability provided by a given chip increases,
these distinctions are blurring both as to technology and
circuit function. For example, aggressive new processes

864 PROCEEDINGS OF THE IEEE, VOL. 73, NO. 5, M A Y 1985

provide NMOS, CMOS, and limited bipolar capability all in
the same process on the same chip. Thus on a large static
RAM specialized NMOS circuits can be used for high den-
sity and high speed in the interior of the array, and yet all
peripheral decoding and access circuitry can utilize low-
power CMOS together with bipolar capability for driving
the pads. Furthermore, logic and memory are being merged
together in many designs. This is certainly seen in the
contemporary signal processing chips, but even in gate
arrays, the trend is to include logic and memory together,
rather than forcing the user to build memory modules in an
inefficient manner from the previously furnished gates.
These trends are, of course, yet another example of the
optimization of the technology in the direction of the
intended functionality. This movement calls for an increase
in process complexity along with circuit variation and flexi-
bility, as well as design techniques that can efficiently
utilize these resources. It is all part of a picture of increas-
ingly sophisticated technology being carefully tuned to the
needs of end users.

We turn now to the consideration of specialized signal
processing chips. A number of these are currently available
commercially, and many more can be expected in the
future. Rather than attempt to give a survey of all of these
parts, we instead pick one design, the Texas Instruments
TMS32010 [32] which is widely utilized in many applica-
tions. This part is fabricated in NMOS technology (although
it is currently being redesigned into CMOS) and operates
with a 200-ns instruction cycle time. Sixteen-bit instruction
and data words are utilized, together with a 32-bit ALU/ac-
cumulator. A 16 X 16 multiplication takes place within the
200-ns cycle time, and a 0-15-bit barrel shifter is provided.
Two hundred and eighty-eight bytes of on-chip data RAM
are provided, although this can be expanded externally to a
total of 8K bytes at full speed. In one version, 3K bytes of
on-chip program ROM are also provided. Eight input and
eight output channels are available, together with a 16-bit
bidirectional data bus with 40-Mbit/s transfer rate. The die
size is approximately 49000 mils2, the power dissipation 1
W, and the standard package is a 40-pin dual in-line package.
The reader is referred to the literature [32] for a comprehen-
sive discussion of this design, but Fig. 8 shows the architec-
tural block diagram, and Fig. 9 shows a micro-photograph
of the chip. The block diagram is fairly straightforward, each
component being labeled functionally. The use of a multi-
plier, together with shifter and accumulator to produce
sums of products, together with a possibility of an output
shift is a highly useful and general capability. Separate
program and data memories are provided, and a variety of
addressing modes including direct addressing, indirect ad-
dressing, and immediate addressing are provided on the
chip. For filtering and FFT applications, the inclusion of a
multiply immediate instruction is very useful since it both
saves on data storage for the coefficients, but also saves
their access time. It is clear what the direction of continuing
evolution of such chips will be. Without question, given
the capability to place over half a million transistors at 1-pm
Iinewidths on a single die, users will want and receive large
amounts of on-chip program and data memory. This is
probably the most pressing current requirement. As the
technology heads in the direction of providing, for exam-
ple, I - p m CMOS capability, speed improvements will also
be available, with previously cited 16 X 16 multiplier speeds
of well below 50 ns coupled with processor cycle times in

the neighborhood of 25 ns. The kind of highly overlapped
pipelined architecture previously described in this paper
will become readily available in the next five years on a
single chip, leading to extremely aggressive performance. In
fact, such single-chip systems will be so complex, that a
major part of the development cost is the construction of
development software, including not only conventional
simulators and compilers, but real-time simulation, verifica-
tion, and testing capability within the context of larger
systems. The provision of such capability is a tall order, and
we can expect to see that the number of specialized digital
signal processing chips of high complexity will go down
due to the sheer magnitude of the design and support
effort required. The capability of these chips will be SO

large, both in terms of hardware and software, that it will
be practical for many applications to fit onto these chips
without the need for specialized or custom hardware. In-
deed, the chips that we have foreseen here will compete
aggressively with current board level products from a num-
ber of manufacturers.

We leave our discussion of technology with a view of
some new directions i n highly integrated system architec-
tures that are currently becoming available. We have al-
ready noted that chips are becoming larger and larger, to
the extent that we can expect chips 1 in on a side by the
year 1990. There is thus a natural tendency to think of
placing entire systems, including processing and memory
and input/output capability all within one chip. As the size
of the chip grows, however, the yield for a given level of
technology goes down, so that at any given time very large
chips are not economically viable. One attempt to avert
these difficulties is to utilize wafer-scale integration,
wherein an entire system is built on a wafer using re-
dundancy and discretionary interconnect techniques. The
overall system is divided up into a number of modules,
which are placed, using a redundancy factor of perhaps
two, over a regular grid on a wafer. After the wafer has
been fabricated, all of the modules are individually tested
while the wafer is still intact. Those modules that are found
to function satisfactorily are then connected to the overall
interconnect network which utilizes thick metal lines, using
laser [33] or electron-beam techniques [34] which are cur-
rently well understood. In this way, a high-performance
system fabricated utilizing a highly disciplined interconnect
technology can be achieved within a very small space.
Recent examples of designs in this framework include a
fully parallel 16-point FFT [3], using serial arithmetic. In this
design, all 32 butterflies are physically implemented, to-
gether with a redundancy factor of two, so that no fewer
than 32 X 2 X 4 = 256 serial multipliers are provided on
the wafer. This design is also accompanied by high band-
width input and output capability commensurate with this
level of arithmetic capability. In another example, a systolic
design for dynamic timewarping has been specified for
wafer scale design [35]. Once again, a highly regular archi-
tecture is found to be suitable for the wafer scale tech-
nology, and can provide a high level of performance.

V. PROGRAMMING

For many years, the emphasis in digital signal processing
has been on speed, and most users have worked hard to
make every bit count. For this reason, many of the older

ALLEN: COMPUTER ARCHITECTURE F O R DIGITAL SIGNAL PROCESSING 865

I I
16

AR01161 1
A R l (161 I

.

4’ 8

fig. 8. Block diagram of Texas Instruments TMS32010.

‘-& i SHIFTER
10. 151

DATA RAM
1144 1161

I DATA I

I l 6

;

T 1161

MULTIPLIER

P 1321

12
MUX

E27 ALU 1321

SHIFTER IO. 1.41

1 DATA BUS

and currently available machines are very difficult to pro-
gram, even in assembly language. Machine designers, in
their desire to make available to the user all of the possible
performance available, have provided capabilities and re-
vealed possibilities for parallelism way beyond the level of
specification usually encountered by most programmers.
Writing code for many of these machines is like writing a
horizontal (long word length) microcode for a highly com-
plicated processor, and hence we have seen a situation
where users had to apply the kind of skills normally re-
served for machine designers to every-day applications pro-
gramming. It is not surprising that this practice has led to a
great deal of frustration, tedium, and anger, particularly
when the manufacturer did not foresee all possible ways in
which the hardware might be utilized by a “clever” pro-
grammer. The utilization of large degrees of parallelism, of
course, implies a correspondingly large amount of control
and coordination, so that tasks can be computed in a

conflict-free way. Until very recently, programmers have
received very little help, their only reward being the re-
sultant high speed if in fact they were successfully able to
apply the available machines to their tasks. One of the
results of this phenomenon has been the development of
array libraries on many specialized machines. For example,
many of the highly pipelined commercially available ma-
chines are so difficult to program that users typically deal
with them as a “subroutine box,” simply calling library
routines that have been developed by the manufacturer.
This approach is satisfactory for standard tasks such as
convolution, correlation, FFT, and other popular tasks, but
there is an unquestioned trend in the direction of large
complex tasks that involves many relatively unstructured
portions of code in addition to such familiar library tasks.
One approach to this problem has been to develop a series
of machines that utilize many forms of parallelism (includ-
ing pipelining, duplicated memories, overlapped I/O, etc.)

866 PROCEEDINGS OF THE IEEE, VOL. 73, N O . 5, M A Y 1985

but which appear to the programmer as a single-sequence
von Neumann machine. It is not difficult to construct the
control structure for such machines in such a way that this
appearance is maintained, even though a few machine
cycles may occasionally be wasted in connection with
data-dependent conditionals. At Lincoln Laboratory, for ex-
ample, a family of such machines have been developed
which provide fast 50-ns cycle time combined with ECL
technology and the appearance of a straightforward single-
sequence machine to the programmer [36]. These machines
have been very effective and popular laboratory instru-
ments, being readily programmed by a wide variety of
users. The efficiency of assembly language code is retained,
together with a variety of useful software development
tools. As signal processing tasks become more complex,
there is an increased need to consider programmer produc-
tivity which is enhanced when the programmer does not
have to mentally juggle several confusing parallel events
during each phase of the coding process.

Another technique used to aid the programmer has been
the introduction of so-called “block-diagram” languages.
These languages, such as BLODl [37] and PATS1 (381 utilize
next-state simulation techniques, and have actually been
available since the earliest days of digital signal processing
when the main focus of the field was on simulation. When
the task to be performed can be highly stylized and parti-
tioned into well-understood and coded blocks, then the
block-diagram approach can be quite useful, and contem-
porary machines are available to support this approach.
There have also been a variety of array-processing lan-
guages, which seek to exploit the separability of data flow
computations (such as the FFT butterfly) and address arith-
metic in a coordinated way. Thus it is possible to write
programs that characterize the data flow of these kernel

computations when fed a continuing stream of input data
generated by the separately coded address arithmetic gen-
erator. Several machines provide considerable support for
such an approach, although there is a need to provide for
the careful coordination of these two processes. Specialized
languages have also been introduced for utilization with
equally specialized architectures, such as systolic arrays. In
this way, the user can specify the desired task at a high
functional level, and then utilize a specialized compiler to
provide the necessary control for an entire coordinated
system of systolic processors [24]. Even the programming of
conventional processors using classical languages such as
Fortran can be highly optimized through careful attention
to control. For example, it has been observed [39] that
Fortran compilers often create loops when a very small
number of iterations is required, and that the attendant
overhead in loop management reduces running speed sub-
stantially. To avoid these problems, it is possible to “un-
wind” these loops, thus increasing the space required for
program store, but decreasing their run time considerably.
Such techniques applied to currently available signal
processing chips have led to very impressive run times for
such classical tasks as FFT.

It seems that in the long run, what is really needed is a
deep fundamental understanding of functional specifica-
tion coupled to the semantics of programming languages.
Two indications of this trend are mentioned here. Kopec
[40] has made a careful study of the limitations of block
diagram and array processing languages, and introduced a
new fundamentally based signal processing language called
SRL. This language provides a framework for representing
discrete time signals as abstract objects whose properties
reflect the mathematical properties of the represented sig-
nals. As such, it is concerned primarily with the numerical
properties of signals, such as signal dimensions and sample
values, and a representation of algorithms for computing
them. In this language, signals are immutable thus leading
naturally to an applicative style of programming that never
modifies (in the sense of replacement) an existing signal.
The language is also well suited for the introduction of
signal types which can then be instantiated by specifying
free parameters in their definition. For example, a sine wave
might be introduced as a type where the frequency and
phase of the signal are left as free variables to be chosen at
the time and instance that this signal type is to be utilized.
A lot of experience has been gained with this language, and
i ts clear style has been found attractive by a number of
users. In the future, a number of extensions to this language
will be provided, thus providing a strong basis for the
continued development of complex general-purpose signal
processing programs.

We complete our discussion of programming by briefly
discussing a fundamental development in program for-
malisms and computer architecture for highly parallel sys-
tems. For some time now, data flow architectures have
been under extensive study as an example of data demand-
driven calculation. Part of this research has involved the
specification of high-level functional languages which can
then be compiled into a fully parallel two-dimensional
representation equivalent to a data-dependence graph. Cer-
tainly one of the applications of these techniques has been
digital signal processing. Once compilation has taken place
from the high-level functional specification to the maxi-

ALLEN: COMPUTER ARCHITECTURE F O R DIGITAL SIGNAL PROCESSING 867

mally parallel representation of the task, it remains for an
interpreter to map the dependency specification onto the
extant computational resources that are available. In most
data flow architectural schemes, the level of control and
communication may be sufficiently general as to be ineffi-
cient in several standard digital signal processing tasks such
as filtering and spectrum estimation. Nevertheless, we point
out that the initial compilation phase into the maximally
parallel data-dependence graph is an important contribu-
tion of software technology, and that pursuant operations
of architectural exploration, performed at this high-level
schematic representation, can serve to provide the designer
with the choice of the degree of parallelism needed in the
performance of a given task. Clearly much software de-
velopment needs to be completed in order to continue to
translate the task from its initial functional specification
through the maximally parallel form to the resultant target
architecture. Work in precisely this direction is currently
underway and can be expected to lead to a basic approach
to programming that can accommodate a wide variety of
target architectures. Thus the basic programming task is
seen to represent a combination of both underlying
semantic clarity, as illustrated by SRL, together with a care-
fully based mathematical theory for architectural perfor-
mance tradeoffs such as those described earlier. There is
certainly reason to believe that within the next five years
such a unified approach will be available, coupled to very
high performance engines utilizing aggressive technology
and highly parallel architectural structures.

VI. DIGITAL SIGNAL PROCESSING ARCHITECTURE EXAMPLES

In recent years, there has been a great profusion of
special-purpose architectures developed for various digital
signal processing applications, ranging all the way from
single chips through plug-in boards, attached processors,
stand-alone machines, special-purpose systolic arrays, and
multiprocessor configurations of both specialized and gen-
eral-purpose machines. We cannot possibly hope to indi-
cate the huge variety of offerings that are available, but will
instead pick a few examples that highlight various architec-
tural techniques. There are many interesting examples to
choose from, and our selection is not meant to confer any
lesser status on those designs that have not been described
explicitly here. Furthermore, we have not described the very
large general-purpose supercomputers that provide vector
processing capability useful for various signal processing
applications. These machines were generally not designed
with digital signal processing as the main application, and
are well described elsewhere in the literature [5].

We start at the chip level. In our discussion of tech-
nology, we have already described the Texas Instruments
TMS32010 chip as a general-purpose digital signal processing
architecture. It is interesting that while this chip provides
substantial speed-up for many filtering and FFT applications
as compared to a standard microprocessor, it can still be
slow when applied to highly specialized but important
applications such as dynamic timewarping in speech recog-
nition. Due to the success of dynamic timewarping for
improving the accuracy of template-based speech recogni-
tion, many investigators have sought to devise custom im-
plementations that can provide this capability in real time.
One such project was undertaken at the University of
California at Berkeley [41] where the goal was to provide a

real-time speech recognizer for a one thousand word
vocabulary using the dynamic timewarping (D m) al-
gorithm. Many algorithms for dynamic timewarping have
been developed but the distance function originally devel-
oped by Sakoe and Chiba [42] is used for these calculations,
as shown here:

15

In this scheme, each word and reference template is com-
posed of an ordered sequence of spectral frames, and the
distance between two words A and B i s seen to involve the
selection of a nonlinear alignment between the two words
such that the distance as computed between the corre-
sponding spectral frames of these two words along the
alignment path is minimized. The equations show how this
calculation is built up from successive distance measures.
The block diagram for the chip used for these calculations
is shown in Fig. IO , and in Fig. 11 a photo-micrograph of the

16 .

R N
E T

S R 8 1 I
DYNAMIC PROGRAMMING

16

Fig. 10. Block diagram of dynamic timewarping chip by
University of California at Berkeley.

Fig. 11. Micro-photograph of dynamic timewarping chip by
University of California at Berkeley.

868 PROCEEDINGS OF THE IEEE, VOL. 73, NO. 5, M A Y 1985

resulting NMOS chip is shown. The chip architecture in-
cludes a distance processor that can compute a four-dimen-
sional Euclidean distance every clock cycle, a pipeline accu-
mulator that sums 4 four-dimensional Euclidean distances
into one 16-dimensional distance, a dynamic programming
processor that can compute one minimization and sum
every 4 clock cycles, an addressing unit for the external
template and scratchpad memories, and a controller for
each of the above processors. As an example, the distance
processor has a four-level pipeline. First, four 4-bit dif-
ferences in absolute values are computed in parallel. Sec-
ond, these differences are squared resulting in four 8-bit
values, and then these 8-bit values are summed pair-wise
into two 9-bit values. Finally, a 10-bit sum is computed, and
saturated to 8 bits. Similar degrees of parallelism are used in
the dynamic programming processor. What is interesting
about this chip is that it has been implemented in modest
technology (4-pm NMOS at a 5-MHz clock rate using an
active area of 20000 mil2) and yet it performs a very high
level of computation for a 1000-word vocabulary at a real-
time rate. Inspection of the chip photo-micrograph reveals
that there are many regular substructures utilized in the
design, and that satisfactory performance has been achieved
without a large amount of custom packing of individual
structures.

Next we turn to an example of a specialized arithmetic
peripheral designed to be plugged into an existing bus of a
minicomputer, without a separate enclosure. Such boards
are intended to provide high-speed operation with simple
programming via Fortran callable subroutines and easy
installation both in the hardware sense and under popular
minicomputer operating systems. High arithmetic through-
put and low cost are prime considerations for such boards,
and they are typically viewed by their users as floating-point
or array-processing accelerators. As an example of this ap-
proach, we cite the SKYMNK system. Two module boards
are provided, TTL technology is utilized, and a cycle time of
143 ns is achieved. Real and complex arithmetic primitives
are provided in single precision floating point, as well as a
variety of vector-based instructions. The system shares
memory with a minicomputer host according to the archi-
tecture shown in Fig. 12.

As we have seen in earlier discussion, an external address
sequencer is needed to take'matrix data from memory in a
sequence that isolates desired vectors, rows, or columns in
the local SKYMNK operating memory. An internal address
sequencer is utilized within the system and can overlap
with external memory accesses. Commands may be entered
into the data and command memory so that a sequence of
tasks may be set up from the host, and this memory is also

MFM I (0 OTVER

M C 11/23 I
M 6 8 0 0 0 8086 HOST COWUTER BUS
z Boo0 I

I I
COMMUNKATIONS LOGIC

M S T BUS

SEOUENCING SEQUENCING

COMMAND

ARITHMETICS DATA MEMORY

fig. 12. Architectural block diagram of SKYMNK arithmetic
peripheral.

utilized for providing working space for 64 floating-point
numbers. One of the factors that distinguishes these sys-
tems from larger units is the small amount of system mem-
ory provided, requiring substantial partitioning on the part
of the user software. Finally, the arithmetic unit contains a
floating-point multiply and add pipeline. The time required
for a 1024-point complex floating-point FFT is 50 ms. Sys-
tems such as the SKYMNK have been very popular for
providing the low-cost addition of signal processing capa-
bility on inexpensive mini- and microcomputer-based
systems. They utilize existing high-performance multiplier-
accumulator chips, together with multistage pipelined arith-
metic units and a small amount of local memory. A continu-
ing variety of these machines is now appearing, and users
can expect increasing performance at steadily dropping cost
as technology improves. Since the design of these systems
is an architectural specialty, manufacturers of general-pur-
pose machines will often choose to utilize these accelera-
tors rather than expend the design time needed to achieve
such performance.

Next we turn to a class of machines designated as at-
tached processors. While such machines are designed to be
attached to a host processor, they reside in a separate
cabinet, often have substantial amounts of internal mem-
ory, operate at speeds ranging from a few megaflops up to
100 megaflops, and of course are generally much more
costly than the individual plug-in board systems previously
described. For illustration, we select the Star Technologies
ST-I00 processor. There are several interesting attributes of
this system, but perhaps the most striking feature is the
utilization of very aggressive integrated circuit and packag-
ing technology to achieve a high level 100-megaflop perfor-
mance. First of all, high arithmetic performance is achieved
by the utilization of ECL gate arrays, each dissipating ap-
proximately 4 W. These are mounted on multiple pin chip
carriers on adaptor boards, and each has a cooling fin which
is housed in a cylindrical enclosure that confines forced air
f low in an efficient way. Memory is also packaged in an
exceedingly dense way through stacking of submodules
four high on a single printed circuit board capable of
providing eight million bits of memory. In this way, a total
system memory of 32 Mbits (using 256K RAMS) is provided,
This level of packaging technology has not previously been
seen except in very expensive supercomputer designs, and
is indicative of the levels of performance that can be
achieved through the use of elaborate design software that
provides for extensive simulation, verification, and testing.
We cannot overemphasize the fact that such machines
simply cannot be reliably designed and built without the
use of these design aids in any reasonable time. More
positively, the ST-I00 shows that with the use of such
software, state-of-the-art, highly aggressive semi-custom
technology can be efficiently utilized to provide very high
performance.

The overall architecture of the ST-100 is indicated in Fig.
13. The system is designed so that it can be interfaced from
several different host computers, via channel adaptors, to as
many as eight parallel 1/0 processors in the ST-100. From
the user point of view, Fortran application programs run-
ning in host machines call large-scale computation processes
running on the ST-I00 which in turn call macros for arith-
metic and data movement within the array processor. A
maximum multiplexed channel rate of 25 Mbytes/s to and
from the main memory can be sustained. Next, a control

ALLEN: COMPUTER ARCHITECTURE FOR DIGITAL SIGNAL PROCESSING 869

INPUTlOUTPUT SUBSYSTEM

To
HOST

- DATA f LOYI
0-- CONTROL

MAIN MEMORY

t

- 1 I
I I

I
!

Fig. 13. Architectural block diagram of ST-I00 array processor.

processor using two Motorola Moo0 microprocessors run-
ning at a 12.5-MHz clock is utilized to coordinate all of the
activities within the ST-100. The control processor manages
the staging of memory from the host to the ST-I00 main
memory and on to a high-speed data cache which can be
partitioned into six different regions for a number of differ-
ent processes. These data cache ports are capable of operat-
ing at speeds up to 100 Mbytes/s using 8-way interleaving
of 320-ns access time memory devices. Furthermore, the
storage move processor interposed between the main
memory and the data cache (which is controlled by the
control processor) can perform complex address generation
for both memories as well as on-the-fly data format conver-
sions. Finally, an arithmetic control processor manages two
pipelined multipliers and two pipelined adders, together
with a divide/square root unit. The 128-bit-wide control
word manages all of these facilities as well as four integer
ALU operations, one test and branch operation, and three
memory references during each 40-ns clock cycle. In this
machine, we see virtually all of the high-performance archi-
tectural structures used. These include pipelined arithmetic
units, multiple hierarchically organized memories, special-
ized control processors, multiple input/output processors,
specialized address generation and type conversion, and
very aggressive technology. While the performance of this
system is indeed impressive, the reader should not infer
that it can always outperform lesser hardware configura-
tions that are highly optimized for particular tasks. For
example, the SPS IO00 system, which provides a very cost-
effective solution to the computation of very-large high-

speed FFTs, utilizes a specialized modular architecture pro-
viding radix-four FFT calculations using serial arithmetic.
The overall system architecture can be easily built up, both
with respect to word size and FFT size to provide computa-
tion rates in excess of one billion operations per second so
that a 1024-point complex FFT utilizing 32-bit words can be
completed in 297 ks. These performance figures indicate a
tradeoff that must be contemplated by the user. O n the one
hand, programmability and general-purpose performance
provide flexibility, yet highly specialized architectures can
always deliver higher performance for less cost but with an
attendant loss in flexibility.

Earlier in this paper, during our discussion of pipelined
processing, we referred to a specific architecture developed
at MIT Lincoln Laboratory [20] as an example of a continu-
ing evolution of high-performance digital signal processing
machines. These machines are not commercially available,
but the use of ECL technology, multiple specialized mem-
ories, duplicated memories, and high-performance pipelin-
ing has led to a stand-alone architecture providing speeds
in excess of 20 million instructions per second (mips) that
have proved to be exceedingly useful and versatile for the
development of high-performance speech processing al-
gorithms. Aside from the high level of hardware perfor-
mance, the cardinal virtue of these machines is that they
appear to the programmer to be standard single-sequence
architectures, and the control difficulties of dealing with all
the parallelism are hidden from the user's architectural view
of the machine. The result is that a large number of al-
gorithm implementors can use these compact yet high-per-

870 PROCEEDINGS O F THE IEEE, VOL. 73, NO. 5, M A Y 1585

formance units for algorithm research through the use of
standard assemblers and loaders. This approach to high-per-
formance digital signal processing has not yet been imple-
mented through commercial offerings, perhaps due to the
fact that the performance of these machines involves timing
tolerances that cannot be readily realized in a produc-
tion-line environment. Nevertheless, with the advent of
new design and testing software already mentioned, the
great utility of these machines may become available to a
much broader class of user.

We now move to discuss an example of highly special-
ized systolic computation. In recent years, a great deal of
attention has been focused on the utilization of systolic
schemes for matrix multiplication, one- and two-dimen-
sional convolution, and a broad variety of standard linear
algebra tasks. Systolic architectures involve the use of a
large number of regular processing elements connected
into an array that involves only nearest neighbor communi-
cation and a streaming of data (and occasionally control)
throughout the array. Starting from the original work by
Kung and Leiserson [43], it has become clear that very high
performance rates can be achieved, although relatively few
of these specialized processors have actually been built. For
our example, we describe a linear array built at ESL [44] from
TTL technology on wire-wrapped boards intended to per-
form matrix multiplication, one-dimensional convolution,
and two-dimensional convolution. This implementation was
a proof-of-concept design, and utilized only off-the-shelf
components that are readily available. The overall architec-
ture of the system is shown in Fig. 14, and the linear array is
indicated in Fig. 1 5 with the detailed structure of each

INTERFACE

I SYSTOLIC .WOCESOR I
Fig. 14. Experimental system architecture for ESL systolic
array.

L

"
CELL

M E M O R Y

Fig. 15. ESL linear systolic array

MEMORY
CELL

I I

I I <>
OUTPUT STREAM

Fig. 16. Systolic cell architecture for ESL linear systolic array.

Fig. 17. Photograph of ESL linear systolic array.

systolic cell indicated in Fig. 16. Fig. 17 shows a picture of
the resulting implementation consisting of eight hinged
board assemblies utilizing commercially available multi-
pliers and providing for easy maintenance and debugging.
The systolic processor is designed to be used as an attached
processor and is accessed from the host through a collec-
tion of Fortran subprograms. Data and commands are trans-
ferred through the host interface, and results and status
information can be returned to the host from the systolic
processor. A command dispatcher stores systolic processor
instructions in a command buffer and dispatches these
instructions to other subsystems for execution. The local
memory serves as a buffer to support high-speed operation
of the array. The systolic array itself consists of an array
controller and a linear array that can be configured with any
number of cells. The controller i s utilized to synchronize
the operation of the local memory and the output processor
which shifts and rounds the results according to the specifi-
cations supplied by the user and also detects the maximum
result value. Programmable address generators provide the
address sequences for the local memory and the output
buffer. The architecture of the cell is shown in Fig. 16. Each
cell consists of a multiply-accumulate chip, a cell memory
with 1024 16-bit words, a tag memory with 1024 4-bit
words, and three latch registers, one for each systolic stream
that passes through the cell. Since each cell can perform
one 16-bit fixed-point multiplication and one full precision
(42-bit) accumulation every 200 ns, each cell has a maxi-
mum computational rate of 10 million operations per sec-
ond (mops). Thus a systolic array of 20 cells would have a
maximum computational rate of 200 mops. The interested
reader should refer to the cited references for more detailed

ALLEN. COMPUTER ARCHITECTURE F O R DIGITAL SIGNAL PROCESSING 871

discussion of architectural control including the way in
which matrix multiplication and one-dimensional convolu-
tion is actually performed in this architecture. For our pres-
ent purpose, we point out that this system can be utilized
for calculations ranging from a radix-eight DFT with 32-bit
complex results for 512 X 512 input data at an effective
computation rate of 61 mops up to a one-dimensional
convolution with 48-bit results for 4096 input data size at an
effective computation rate of 163 mops. These are indeed
very impressive performance figures, particularly when it is
considered that conservative technology and packaging has
been utilized throughout this system. There is no question
that this architectural approach will be extended to
special-purpose hardware for the real-time solution of a
wide variety of linear algebra tasks. It is known that a family
of systolic array architectures using a simple lattice of
processing elements and many identical cells can effec-
tively carry out the matrix factorizations required to solve
linear systems, least squares, and eigenvalue problems. There
is no question that exceedingly high performance can be
obtained through utilization of these systolic techniques for
linear algebra tasks, and that the design of such systems is
aggressively underway at present.

VII. SUMMARY

In this paper we have endeavored to give a comprehen-
sive view of computer architecture for digital signal
processing. We started by motivating the need for digital
signal processing, and then showing the chronological
evolution towards increasing levels of complexity, which
would lead to unacceptable performance on conventional
single-sequence machines. We noted that any form of com-
puter architecture is determined by a number of factors
including technology, the nature of the algorithms to be
performed, data structures utilized, programming language
considerations, and the intrinsic nature of the computa-
tional functional units themselves. Fortunately, the nature
of digital signal processing algorithms, while increasing in
variety, still contains a number of basic canonical forms that
are used repeatedly in many applications. These algorithmic
forms have been characterized, together with the observa-
tion that it is impossible to specify an algorithm without
including an inherent performance bias. In order to under-
stand these biases, we have introduced a basic model for
data flow and control, and shown through the data-depen-
dence graph the inherent sequential constraints that must
be retained in any implementation. Presentation of this
level of algorithmic representation leads naturally to the
notion of architectural exploration whereby a given archi-
tecture corresponding to a particular algorithm can be sys-
tematically manipulated through performance alternatives
in order to yield a tradeoff between space, time, and power
that is acceptable for the intended application. With this
background, it has then been possible to study the various
techniques, called- architectural structures, that are intro-
duced into comprehensive systems in order to improve
performance. These structures include pipelining, multiple
function units, multiple identical processing elements, a
wide variety of memory structures, the introduction of
control processors, and the provision for high data rate and
flexible input/output. Once a system designer has selected

a particular architecture, together with the architectural
structures that comprise it, it remains to utilize some am-
bient technology in order to realize a physical system. We
have discussed the overwhelmingly strong impact of tech-
nology on system performance, and indicated the many
technological choices that can be made. We emphasize
particularly the rapidity with which technology i s changing,
and point out that the ability to achieve high speed to-
gether with substantial complexity on a single chip has led
to very significant progress in digital signal processing im-
plementations. This progress is particularly noteworthy in
the case of digital signal processing chips which range from
custom designs through programmed signal processing chips
to specially compiled forms intended for very restricted
classes of computations. We have illustrated all of these
techniques, and contrasted the role of off-the-shelf chips
versus semi-custom and full-custom designs. Given the
hardware basis of a system, programming considerations are
of prime importance in order to insure high productivity. In
the past, programming was a relatively neglected part of
high-performance digital signal processing systems, but re-
cently much attention has been focused on this area due to
the need to conveniently manipulate very substantial com-
puting resources in a flexible and insightful way. While
there has been some progress in the programming area,
certainly much remains to be done, particularly when multi-
processor systems must be effectively coordinated in an
error-free way. Finally, we have coordinated all of our
observations from the previous sections in the form of
illustrative examples. These range from custom chips
through single-board products, attached processors, high-
performance stand-alone single-sequence machines, and
systolic architectures for specialized linear algebra applica-
tions. Great progress has been made in all of these areas,
and continued improvements at all levels of performance
can be expected leading to high performance in compact
low-cost implementations.

In many ways, the great benefits of today's technology
have motivated a more fundamental look at computer ar-
chitecture for digital signal processing systems. In the past,
the technology was not able to support a wide variety of
different performance levels, so that the ability to char-
acterize in a fundamental and insightful way architectural
alternatives was not so pressing. At present and into the
future, however, the ability to characterize algorithms in
terms of a well-chosen set of semantic primitives coupled
with the ability to systematically explore architectural alter-
natives and their consequences in the target implementa-
tion technology, will make computer architecture for digital
signal processing as well as computer architecture in the
large much more of a science than an art. This desirable
trend will become in fact a necessity as the level of com-
plexity of digital signal processing algorithms continues to
rise. We are witnessing a situation when necessity is indeed
the mother of invention, and where the onrushing options
created by a robust technology are forcing the formation of
well-codified scientific principles in this design area. This is
a welcome and exciting turn of events, and in the years to
come system designers can contemplate the use of ex-
tremely powerful interactive workstations providing a de-
gree of architectural creativity ranging over the given
semantic algorithmic basis that has never been possible
before. This new found scientific basis, together with bur-

872 PROCEEDINGS O F THE IEEE, VOL. 73, N O . 5 , M A Y 1985

geoning technology, will continue to fuel rapid and impres-
sive advances in all facets of the digital signal processing
field, and it i s likely that we are witnessing just the begin-
ning of such an impressive long-term trend.

REFERENCES

[l] K. Bromley and J. Whitehouse, “Signal processing technology
overview,” SPIE, vol. 298 (Real Time Signal Processing IV,

[2] C. L. Steele, Jr., and C. J. Sussman, ”Constraints,” APL Quote
Quad, vol. 9, no. 4, pt. 1, pp. 208-225, June 1979.

[3] 5. L. Carverick and E. A. Pierce, “A single wafer 16-point
16-MHz FFT processor,” in Proc. 7983 Custom Integrated
Circuits Conf., pp. 244-248.

[4] S. J. Mason, “feedback theory-Some properties of signal
f low graphs,” Proc. IRE, vol. 41, pp. 920-926, Sept. 1953.
-, “Feedback theory-Further properties of signal flow
graphs,” Proc. IRE, vol. 44, pp. 920-926, July 1956.

(51 V. Zakharov, “Parallelism and array processing,” /€€E Trans.
Cornput., vol. C-33, no. 1, pp. 45-78, Jan. 1934.

[6] H. M. Ahmed and M. Morf, “Synthesis and control of signal
processing architectures based on rotations,” in VLSl 87, J. P.
Gray, Ed. New York: Academic Press, 1981, pp. 43-52.

[7] C. Volder, “The CORDIC trigonometric computing tech-

330-334, Sept. 1959.
nique,” IRE Trans. Electron. Comput., vol. EC-8, no. 3, pp.

[8] J. Allen and R. C. Gallager, Notes for MIT Course “Computa-
tion Structures,” 1975.

[9] W. 6. Ackerman, “Data flow languages,” /€E€ Computer, vol.
15, no. 2, pp. 15-25, Feb. 1982.

[lo] J. E. Thornton, “Parallel operation in the Control Data 6600,’’
in Proc. AFIPS-FJCC, vol. 26, pt. 2, pp. 33-40, 1964.

[l l] R. M. Tomasulo, “An efficient algorithm for exploiting multi-
ple arithmetic units,” lBM/ . Res. Devel., pp. 25-33, Jan. 1%7.

[12] J. R. Fisher, “Architecture and applications of the SPS-41 and
SPS-81 programmable digital signal processors,” in €ASCON
74 Rec., pp. 674-678.

[13] J. A. Darringer and W. H. Joyner, Jr., “A new look at logic
synthesis,” in Proc. 77th Design Automation Conf., pp.
543-549, 1980.

[I41 C. 5. Miranker, “The use of conflict in the translation and
optimization of hardware description languages,” Ph.D. dis-
sertation, MIT EECS Dep., 1979.

[15] 0. M. Henrot, “On modularity and computational parallelism
in digital filter implementations,” Ph.D. dissertation, Univ. of
Colorado, EE Dep., 1983.

[16] P. R. Cappello and K. Steiglitz, “Unifying VLSl array designs
with geometric transformations,” in Proc. 7983 Int. Conf. on
Parallel Processing, pp. 448-457.

[I71 C. Mead and L. Conway, Introduction to VLSl Systems.
Reading, MA: Addison-Wesley, 1980.

[18] 5. K. Rao and T. Kailath, “Digital filtering in VLSI,” Proc. 2nd
Annual Allerton Conf. on Communication, Control, and
Computing, Oct. 1984.

[I91 C. E. Leiserson and J. B. Saxe, “Optimizing synchronous sys-
tems,” in Proc. /E€€ Foundations o f Computer Science Conf.,
1981.

[20] D. 6. Paul, J. A. Feldman, and V. J. Sferrino, ”A design study
for an easily programmable, high-speed processor with a
general-purpose architecture,” MIT Lincoln Lab. Tech. Note

[21] Arvind and R. A. lannucci, “Two fundamental issues in
multi-processing: The dataflow solution,” MIT Lab. for Com-
puter Science Tech. Memo 241, Sept. 1983.

[22] C. A. Frank, E. M. Creenawalt, and A. V. Kulkarni. “A systolic
processor for signal processing,” in Proc. 7982 Nat. Computer
Conf., pp. 225-231.

1981), pp. 102-106.

1980-50,1980.

[23) 6. Ackland, N. Weste, and D. J. Burr, “An integrated multi-
processing array for time warp pattern matching,” in Proc. 8th
Annu. Symp. on Computer Architecture, pp. 197-215, May
1981.

[24] S. Y. Kung, “On supercomputing with systolic/wavefront
array processors,” Proc. I€€€, vol. 72, no. 7, pp. 867-8&1, July
1984.

[25] D. C. Baltus, “Design of an assembler of NMOS fast parallel
fractional multipliers,” B.S. thesis, MIT EECS Dep., May 1983.

[26] R. L. Rivest, “The ’PI’ (placement and interconnect) system,”
in Proc. 79th Design Automation Conf., pp. 475-481, ‘1982.

[27] P. 6. Denyer and D. Renshaw, “Case studies in VLSl signal
processing using a silicon compiler,” in Proc. 7983 Int. Conf.
on Acoustics, Speech, and Signal Processing, pp. 939-942.

[28] R. lain, J. Vandewalle, and H. De Man, “Efficient CAD tools
for the coefficient optimization of arbitrary integrated digital
filers,” in Proc. 79% Int. Conf. on Acoustics, Speech, and
Signal Processing, pp. 30.11.1 -30.1 1.4.

(291 Y. Nakayama, S. Katsuhiko, H. Shimizu, N. Yokoyama, and A.
Shibatomi, “A GaAs 16 X 16b parallel multiplier using self-
alignment technology,” in 7983 Solid-State Circuits Conf. Dig.
Tech. Papers, pp. 48-49.

[30] On IBM packaging, see the entire issues of ISM 1. Res.
Develop., vol. 26, no. 3, May 1982 and vol. 27, no. 1, Jan. 1983.

(311 J , W. Balde, “Report on IEEE Computer Packaging Committee

1934.
Spring Packaging Workshop,” /€E€ Computer, pp. 83-86, Jan.

[32] K. McDonough, E. Caudel, S. Magar, and A. Leigh, “Micro-
computer with 32-bit arithmetic does high-precision number
crunching,” Electronics, pp. 105-110, Feb. 24, 1982.

[33] J. I . Raffel, “On the use of nonvolatile programmable links for
restructurable VLSI,” in Proc. Caltech Conf. on VLSI, Jan. 1979.

(341 D. C. Shaver, “Electron beam techniques for testing and
restructuring of wafer-scale integrated circuits,” MIT EECS
Dept. Ph.D. dissertation, 1981.

[35] J. A. Feldman, S. L. Carverick, F. M. Rhodes, and J. R. Mann,
“A wafer scale integration systolic processor for connected
word recognition,” in Proc. 7984 Int. Conf. on Acoustics,
Speech, and Signal Processing, pp. 256.4.1-258.4.4.

[36] P. E. Blankenship, “LDVT: High performance minicomputer
for real-time speech processing,” in €ASCON 75 Rec., pp.
21 4a-214g.

[37] J. Kelley, C. Lochbaum, and V. Vyssotsky, “A block diagram
compiler,” Bell Syst. Tech. J., vol. 40, no. 3, May 1%1.

[38] 6. Gold and C. Rader, Digital Processing o f Signals. New
York: McCraw-Hill, 1%9.

[39] L. R. Morris, “Automatic generation of time efficient digital
signal processing software,” I€€€ Trans. Acoust., Speech, S i g
nal Process., vol. ASSP-25, no. 1, pp. 74-79. Feb. 1977.

(401 C. E. Kopec, “The signal representation language SRL,” I€€€
Trans. Acoust., Speech, Signal Process., to be published.

[41] R. Kavaler, R. W. Brodersen, T. C. Noll, M. Lowy, and H.
Murveit, “A dynamic time warp IC for a one thousand word
recognition system,” in Proc. 7 9 8 4 Int. Conf. on Acoustics,
Speech, and Signal Processing, pp. 258.6.1-256.6.4.

[42] H. Sakoe and 5. Chiba, “Dynamic programming algorithm
optimization for spoken word recognition,” / € € E Trans.

1978.
Acoust. Speech, Signal Process., vol. ASSP-26, pp. 43-49, Feb.

(431 C. E. Leiserson, Area-Efficient VLSI Computation. Cam-
bridge, MA: MIT Press, 1983.

(441 A. V. Kulkarni and D. W. L. Yen, ”Systolic processing and an
implementation for signal and image processing,” /E€€ Trans.
Comput., vol. C-31, no. 10, pp. 1ooO-1009, Oct. 1982.

(451 J. S. Thompson and S. K. Tewksbury, “LSI signal processor
architecture for telecommunications applications,” I€€€ Trans.
Acoust. Speech, Signal Process., vol. ASSP-30, pp. 619-632,
Aug. 1982.

[46] J. Allen, “Computer architecture for signal processing,” Proc.
/ € € E , vol. 63, no. 4, pp. 624-633, Apr. 1975.

ALLEN: COMPUTER ARCHITECTURE FOR DIGITAL SIGNAL PROCESSING 873

