
Tutorial on MPI: TheMessage-Passing InterfaceWilliam Gropp
A

R
G

O
N

NE

NATIONAL LABORA
TO

R
Y

U
N

IVERSITY OF C
HIC

A
G

O

•

•

Mathematics and Computer Science DivisionArgonne National LaboratoryArgonne, IL 60439gropp@mcs.anl.gov 1

Course Outline� Background on Parallel Computing� Getting Started� MPI Basics� Intermediate MPI� Tools for writing libraries� Final commentsThanks to Rusty Lusk for some of the material in thistutorial.This tutorial may be used in conjunction withthe book \Using MPI" which contains detaileddescriptions of the use of the MPI routines.� Material that beings with this symbol is `advanced'and may be skipped on a �rst reading. 2

Background
� Parallel Computing� Communicating with other processes� Cooperative operations� One-sided operations� The MPI process

3

Parallel Computing
� Separate workers or processes� Interact by exchanging information

4

Types of parallel computingAll use di�erent data for each workerData-parallel Same operations on di�erentdata. Also called SIMDSPMD Same program, di�erent dataMIMD Di�erent programs, di�erent dataSPMD and MIMD are essentially the samebecause any MIMD can be made SPMDSIMD is also equivalent, but in a lesspractical sense.MPI is primarily for SPMD/MIMD. HPF isan example of a SIMD interface.
5

Communicating with other processes
Data must be exchanged with other workers� Cooperative | all parties agree totransfer data� One sided | one worker performstransfer of data

6

Cooperative operationsMessage-passing is an approach that makesthe exchange of data cooperative.Data must both be explicitly sent andreceived.An advantage is that any change in thereceiver's memory is made with the receiver'sparticipation.
SEND(data)

Process 0 Process 1

RECV(data)

7

One-sided operationsOne-sided operations between parallelprocesses include remote memory reads andwrites.An advantage is that data can be accessedwithout waiting for another process
Process 0 Process 1

Process 0 Process 1

(Memory)

PUT(data)

(Memory)

GET(data) 8

Class ExampleTake a pad of paper. Algorithm: Initialize with thenumber of neighbors you have� Compute average of your neighbor's values andsubtract from your value. Make that your newvalue.� Repeat until doneQuestions1. How do you get values from your neighbors?2. Which step or iteration do they correspond to?Do you know? Do you care?3. How do you decide when you are done?
9

Hardware modelsThe previous example illustrates thehardware models by how data is exchangedamong workers.� Distributed memory (e.g., Paragon, IBMSPx, workstation network)� Shared memory (e.g., SGI PowerChallenge, Cray T3D)Either may be used with SIMD or MIMDsoftware models.� All memory is distributed.
10

What is MPI?� A message-passing library speci�cation{ message-passing model{ not a compiler speci�cation{ not a speci�c product� For parallel computers, clusters, and heterogeneousnetworks� Full-featured� Designed to permit (unleash?) the development ofparallel software libraries� Designed to provide access to advanced parallelhardware for{ end users{ library writers{ tool developers 11

Motivation for a New Design� Message Passing now mature as programmingparadigm{ well understood{ e�cient match to hardware{ many applications� Vendor systems not portable� Portable systems are mostly research projects{ incomplete{ lack vendor support{ not at most e�cient level
12

Motivation (cont.)Few systems o�er the full range of desired features.� modularity (for libraries)� access to peak performance� portability� heterogeneity� subgroups� topologies� performance measurement tools
13

The MPI Process� Began at Williamsburg Workshop in April, 1992� Organized at Supercomputing '92 (November)� Followed HPF format and process� Met every six weeks for two days� Extensive, open email discussions� Drafts, readings, votes� Pre-�nal draft distributed at Supercomputing '93� Two-month public comment period� Final version of draft in May, 1994� Widely available now on the Web, ftp sites, netlib(http://www.mcs.anl.gov/mpi/index.html)� Public implementations available� Vendor implementations coming soon 14

Who Designed MPI?� Broad participation� Vendors{ IBM, Intel, TMC, Meiko, Cray, Convex, Ncube� Library writers{ PVM, p4, Zipcode, TCGMSG, Chameleon,Express, Linda� Application specialists and consultantsCompanies Laboratories UniversitiesARCO ANL UC Santa BarbaraConvex GMD Syracuse UCray Res LANL Michigan State UIBM LLNL Oregon Grad InstIntel NOAA U of New MexicoKAI NSF Miss. State U.Meiko ORNL U of SouthamptonNAG PNL U of ColoradonCUBE Sandia Yale UParaSoft SDSC U of TennesseeShell SRC U of MarylandTMC Western Mich UU of EdinburghCornell U.Rice U.U of San Francisco 15

Features of MPI� General{ Communicators combine context and group formessage security{ Thread safety� Point-to-point communication{ Structured bu�ers and derived datatypes,heterogeneity{ Modes: normal (blocking and non-blocking),synchronous, ready (to allow access to fastprotocols), bu�ered� Collective{ Both built-in and user-de�ned collectiveoperations{ Large number of data movement routines{ Subgroups de�ned directly or by topology
16

Features of MPI (cont.)
� Application-oriented process topologies{ Built-in support for grids and graphs (usesgroups)� Pro�ling{ Hooks allow users to intercept MPI calls toinstall their own tools� Environmental{ inquiry{ error control

17

Features not in MPI
� Non-message-passing concepts not included:{ process management{ remote memory transfers{ active messages{ threads{ virtual shared memory� MPI does not address these issues, but has tried toremain compatible with these ideas (e.g. threadsafety as a goal, intercommunicators)

18

Is MPI Large or Small?� MPI is large (125 functions){ MPI's extensive functionality requires manyfunctions{ Number of functions not necessarily a measureof complexity� MPI is small (6 functions){ Many parallel programs can be written with just6 basic functions.� MPI is just right{ One can access
exibility when it is required.{ One need not master all parts of MPI to use it.
19

Where to use MPI?� You need a portable parallel program� You are writing a parallel library� You have irregular or dynamic datarelationships that do not �t a dataparallel modelWhere not to use MPI:� You can use HPF or a parallel Fortran 90� You don't need parallelism at all� You can use libraries (which may bewritten in MPI)
20

Why learn MPI?
� Portable� Expressive� Good way to learn about subtle issues inparallel computing

21

Getting started� Writing MPI programs� Compiling and linking� Running MPI programs� More information{ Using MPI by William Gropp, Ewing Lusk,and Anthony Skjellum,{ The LAM companion to \Using MPI..." byZdzislaw Meglicki{ Designing and Building Parallel Programs byIan Foster.{ A Tutorial/User's Guide for MPI by PeterPacheco(ftp://math.usfca.edu/pub/MPI/mpi.guide.ps){ The MPI standard and other information isavailable at http://www.mcs.anl.gov/mpi. Alsothe source for several implementations. 22

Writing MPI programs#include "mpi.h"#include <stdio.h>int main(argc, argv)int argc;char **argv;{MPI_Init(&argc, &argv);printf("Hello world\n");MPI_Finalize();return 0;}
23

Commentary
� #include "mpi.h" provides basic MPIde�nitions and types� MPI_Init starts MPI� MPI_Finalize exits MPI� Note that all non-MPI routines are local;thus the printf run on each process

24

Compiling and linking
For simple programs, special compilercommands can be used. For large projects,it is best to use a standard Make�le.The MPICH implementation providesthe commands mpicc and mpif77as well as `Makefile' examples in`/usr/local/mpi/examples/Makefile.in'

25

Special compilation commandsThe commandsmpicc -o first first.cmpif77 -o firstf firstf.fmay be used to build simple programs when usingMPICH.These provide special options that exploit the pro�lingfeatures of MPI-mpilog Generate log �les of MPI calls-mpitrace Trace execution of MPI calls-mpianim Real-time animation of MPI (not availableon all systems)There are speci�c to the MPICH implementation;other implementations may provide similar commands(e.g., mpcc and mpxlf on IBM SP2). 26

Using Make�lesThe �le `Makefile.in' is a template Make�le.The program (script) `mpireconfig' translatesthis to a Make�le for a particular system.This allows you to use the same Make�le fora network of workstations and a massivelyparallel computer, even when they usedi�erent compilers, libraries, and linkeroptions.mpireconfig MakefileNote that you must have `mpireconfig' inyour PATH.
27

Sample Make�le.in##### User configurable options #####ARCH = @ARCH@COMM = @COMM@INSTALL_DIR = @INSTALL_DIR@CC = @CC@F77 = @F77@CLINKER = @CLINKER@FLINKER = @FLINKER@OPTFLAGS = @OPTFLAGS@#LIB_PATH = -L$(INSTALL_DIR)/lib/$(ARCH)/$(COMM)FLIB_PATH =@FLIB_PATH_LEADER@$(INSTALL_DIR)/lib/$(ARCH)/$(COMM)LIB_LIST = @LIB_LIST@#INCLUDE_DIR = @INCLUDE_PATH@ -I$(INSTALL_DIR)/include### End User configurable options ###
28

Sample Make�le.in (con't)CFLAGS = @CFLAGS@ $(OPTFLAGS) $(INCLUDE_DIR) -DMPI_$(ARCH)FFLAGS = @FFLAGS@ $(INCLUDE_DIR) $(OPTFLAGS)LIBS = $(LIB_PATH) $(LIB_LIST)FLIBS = $(FLIB_PATH) $(LIB_LIST)EXECS = hellodefault: helloall: $(EXECS)hello: hello.o $(INSTALL_DIR)/include/mpi.h$(CLINKER) $(OPTFLAGS) -o hello hello.o \$(LIB_PATH) $(LIB_LIST) -lmclean: /bin/rm -f *.o *~ PI* $(EXECS).c.o: $(CC) $(CFLAGS) -c $*.c.f.o: $(F77) $(FFLAGS) -c $*.f
29

Running MPI programsmpirun -np 2 hello`mpirun' is not part of the standard, butsome version of it is common with severalMPI implementations. The version shownhere is for the MPICH implementation ofMPI.� Just as Fortran does not specify howFortran programs are started, MPI does notspecify how MPI programs are started.� The option -t shows the commands thatmpirun would execute; you can use this to�nd out how mpirun starts programs on yorsystem. The option -help shows all optionsto mpirun. 30

Finding out about the environment
Two of the �rst questions asked in a parallelprogram are: How many processes are there?and Who am I?How many is answered with MPI_Comm_sizeand who am I is answered with MPI_Comm_rank.The rank is a number between zero andsize-1.

31

A simple program#include "mpi.h"#include <stdio.h>int main(argc, argv)int argc;char **argv;{int rank, size;MPI_Init(&argc, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &rank);MPI_Comm_size(MPI_COMM_WORLD, &size);printf("Hello world! I'm %d of %d\n",rank, size);MPI_Finalize();return 0;}
32

Caveats
� These sample programs have been keptas simple as possible by assuming that allprocesses can do output. Not all parallelsystems provide this feature, and MPIprovides a way to handle this case.

33

Exercise - Getting Started
Objective: Learn how to login, write,compile, and run a simple MPI program.Run the \Hello world" programs. Try twodi�erent parallel computers. What does theoutput look like?

34

Sending and Receiving messages
Process 0 Process 1

A:

B:

Send RecvQuestions:� To whom is data sent?� What is sent?� How does the receiver identify it?
35

Current Message-Passing� A typical blocking send looks likesend(dest, type, address, length)where{ dest is an integer identi�er representing theprocess to receive the message.{ type is a nonnegative integer that thedestination can use to selectively screenmessages.{ (address, length) describes a contiguous area inmemory containing the message to be sent.and� A typical global operation looks like:broadcast(type, address, length)� All of these speci�cations are a good match tohardware, easy to understand, but too in
exible. 36

The Bu�erSending and receiving only a contiguous array ofbytes:� hides the real data structure from hardware whichmight be able to handle it directly� requires pre-packing dispersed data{ rows of a matrix stored columnwise{ general collections of structures� prevents communications between machines withdi�erent representations (even lengths) for samedata type
37

Generalizing the Bu�er Description� Speci�ed in MPI by starting address, datatype, andcount, where datatype is:{ elementary (all C and Fortran datatypes){ contiguous array of datatypes{ strided blocks of datatypes{ indexed array of blocks of datatypes{ general structure� Datatypes are constructed recursively.� Speci�cations of elementary datatypes allowsheterogeneous communication.� Elimination of length in favor of count is clearer.� Specifying application-oriented layout of dataallows maximal use of special hardware.
38

Generalizing the Type
� A single type �eld is too constraining. Oftenoverloaded to provide needed
exibility.� Problems:{ under user control{ wild cards allowed (MPI_ANY_TAG){ library use con
icts with user and with otherlibraries

39

Sample Program using Library Calls
Sub1 and Sub2 are from di�erent libraries.Sub1();Sub2();Sub1a and Sub1b are from the same librarySub1a();Sub2();Sub1b();Thanks to Marc Snir for the following four examples

40

Correct Execution of Library Calls
Process 0 Process 1 Process 2

recv(any) send(1)

recv(any) send(0)

recv(1) send(0)

recv(2) send(1)

send(2) recv(0)

Sub1

Sub2

41

Incorrect Execution of Library Calls
Process 0 Process 1 Process 2

recv(any) send(1)

recv(any) send(0)

recv(1) send(0)

recv(2) send(1)

send(2) recv(0)

Sub1

Sub2

42

Correct Execution of Library Calls with PendingCommuncication
Process 0 Process 1 Process 2

recv(any) send(1)

send(0)

send(0)

recv(0)

recv(any)

send(1)

send(2) recv(1)

recv(2)

Sub1a

Sub2

Sub1b

43

Incorrect Execution of Library Calls with PendingCommunication
Process 0 Process 1 Process 2

recv(any) send(1)

send(0)

send(0)

recv(0)

recv(any)

send(1)

send(2) recv(1)

recv(2)

Sub1a

Sub2

Sub1b 44

Solution to the type problem
� A separate communication context for each familyof messages, used for queueing and matching.(This has often been simulated in the past byoverloading the tag �eld.)� No wild cards allowed, for security� Allocated by the system, for security� Types (tags, in MPI) retained for normal use (wildcards OK)

45

Delimiting Scope of Communication� Separate groups of processes working onsubproblems{ Merging of process name space interferes withmodularity{ \Local" process identi�ers desirable� Parallel invocation of parallel libraries{ Messages from application must be keptseparate from messages internal to library.{ Knowledge of library message types interfereswith modularity.{ Synchronizing before and after library calls isundesirable.
46

Generalizing the Process Identi�er� Collective operations typically operated on allprocesses (although some systems providesubgroups).� This is too restrictive (e.g., need minimum over acolumn or a sum across a row, of processes)� MPI provides groups of processes{ initial \all" group{ group management routines (build, deletegroups)� All communication (not just collective operations)takes place in groups.� A group and a context are combined in acommunicator.� Source/destination in send/receive operations referto rank in group associated with a givencommunicator. MPI_ANY_SOURCE permitted in areceive. 47

MPI Basic Send/ReceiveThus the basic (blocking) send has become:MPI_Send(start, count, datatype, dest, tag,comm)and the receive:MPI_Recv(start, count, datatype, source, tag,comm, status)The source, tag, and count of the message actuallyreceived can be retrieved from status.Two simple collective operations:MPI_Bcast(start, count, datatype, root, comm)MPI_Reduce(start, result, count, datatype,operation, root, comm)
48

Getting information about a message
MPI_Status status;MPI_Recv(..., &status);... status.MPI_TAG;... status.MPI_SOURCE;MPI_Get_count(&status, datatype, &count);MPI_TAG and MPI_SOURCE primarily of use whenMPI_ANY_TAG and/or MPI_ANY_SOURCE in the receive.MPI_Get_count may be used to determine how muchdata of a particular type was received.

49

Simple Fortran exampleprogram maininclude 'mpif.h'integer rank, size, to, from, tag, count, i, ierrinteger src, destinteger st_source, st_tag, st_countinteger status(MPI_STATUS_SIZE)double precision data(100)call MPI_INIT(ierr)call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)print *, 'Process ', rank, ' of ', size, ' is alive'dest = size - 1src = 0C if (rank .eq. src) thento = destcount = 10tag = 2001do 10 i=1, 1010 data(i) = icall MPI_SEND(data, count, MPI_DOUBLE_PRECISION, to,+ tag, MPI_COMM_WORLD, ierr)else if (rank .eq. dest) thentag = MPI_ANY_TAGcount = 10from = MPI_ANY_SOURCEcall MPI_RECV(data, count, MPI_DOUBLE_PRECISION, from,+ tag, MPI_COMM_WORLD, status, ierr) 50

Simple Fortran example (cont.)
call MPI_GET_COUNT(status, MPI_DOUBLE_PRECISION,+ st_count, ierr)st_source = status(MPI_SOURCE)st_tag = status(MPI_TAG)C print *, 'Status info: source = ', st_source,+ ' tag = ', st_tag, ' count = ', st_countprint *, rank, ' received', (data(i),i=1,10)endifcall MPI_FINALIZE(ierr)end

51

Six Function MPIMPI is very simple. These six functions allowyou to write many programs:MPI InitMPI FinalizeMPI Comm sizeMPI Comm rankMPI SendMPI Recv
52

A taste of things to comeThe following examples show a C andFortran version of the same program.This program computes PI (with a verysimple method) but does not use MPI_Sendand MPI_Recv. Instead, it uses collectiveoperations to send data to and from all ofthe running processes. This gives a di�erentsix-function MPI set:MPI InitMPI FinalizeMPI Comm sizeMPI Comm rankMPI BcastMPI Reduce 53

Broadcast and Reduction
The routine MPI_Bcast sends data from oneprocess to all others.The routine MPI_Reduce combines data fromall processes (by adding them in this case),and returning the result to a single process.

54

Fortran example: PIprogram maininclude "mpif.h"double precision PI25DTparameter (PI25DT = 3.141592653589793238462643d0)double precision mypi, pi, h, sum, x, f, ainteger n, myid, numprocs, i, rcc function to integratef(a) = 4.d0 / (1.d0 + a*a)call MPI_INIT(ierr)call MPI_COMM_RANK(MPI_COMM_WORLD, myid, ierr)call MPI_COMM_SIZE(MPI_COMM_WORLD, numprocs, ierr)10 if (myid .eq. 0) thenwrite(6,98)98 format('Enter the number of intervals: (0 quits)')read(5,99) n99 format(i10)endifcall MPI_BCAST(n,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)
55

Fortran example (cont.)c check for quit signalif (n .le. 0) goto 30c calculate the interval sizeh = 1.0d0/nsum = 0.0d0do 20 i = myid+1, n, numprocsx = h * (dble(i) - 0.5d0)sum = sum + f(x)20 continuemypi = h * sumc collect all the partial sumscall MPI_REDUCE(mypi,pi,1,MPI_DOUBLE_PRECISION,MPI_SUM,0,$ MPI_COMM_WORLD,ierr)c node 0 prints the answer.if (myid .eq. 0) thenwrite(6, 97) pi, abs(pi - PI25DT)97 format(' pi is approximately: ', F18.16,+ ' Error is: ', F18.16)endifgoto 1030 call MPI_FINALIZE(rc)stopend 56

C example: PI
#include "mpi.h"#include <math.h>int main(argc,argv)int argc;char *argv[];{ int done = 0, n, myid, numprocs, i, rc;double PI25DT = 3.141592653589793238462643;double mypi, pi, h, sum, x, a;MPI_Init(&argc,&argv);MPI_Comm_size(MPI_COMM_WORLD,&numprocs);MPI_Comm_rank(MPI_COMM_WORLD,&myid);

57

C example (cont.)while (!done){ if (myid == 0) {printf("Enter the number of intervals: (0 quits) ");scanf("%d",&n);}MPI_Bcast(&n, 1, MPI_INT, 0, MPI_COMM_WORLD);if (n == 0) break;h = 1.0 / (double) n;sum = 0.0;for (i = myid + 1; i <= n; i += numprocs) {x = h * ((double)i - 0.5);sum += 4.0 / (1.0 + x*x);}mypi = h * sum;MPI_Reduce(&mypi, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,MPI_COMM_WORLD);if (myid == 0)printf("pi is approximately %.16f, Error is %.16f\n",pi, fabs(pi - PI25DT));}MPI_Finalize();}
58

Exercise - PI
Objective: Experiment with send/receiveRun either program for PI. Write newversions that replace the calls to MPI_Bcastand MPI_Reduce with MPI_Send and MPI_Recv.� The MPI broadcast and reduce operationsuse at most log p send and receive operationson each process where p is the size ofMPI COMM WORLD. How many operations doyour versions use?

59

Exercise - RingObjective: Experiment with send/receiveWrite a program to send a message around aring of processors. That is, processor 0 sendsto processor 1, who sends to processor 2,etc. The last processor returns the messageto processor 0.� You can use the routine MPI Wtime to timecode in MPI. The statementt = MPI Wtime();returns the time as a double (DOUBLEPRECISION in Fortran).
60

Topologies
MPI provides routines to provide structure tocollections of processesThis helps to answer the question:Who are my neighbors?

61

Cartesian TopologiesA Cartesian topology is a meshExample of 3� 4 Cartesian mesh with arrowspointing at the right neighbors:
(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

62

De�ning a Cartesian Topology
The routine MPI_Cart_create creates a Cartesiandecomposition of the processes, with the number ofdimensions given by the ndim argument.dims(1) = 4dims(2) = 3periods(1) = .false.periods(2) = .false.reorder = .true.ndim = 2call MPI_CART_CREATE(MPI_COMM_WORLD, ndim, dims,$ periods, reorder, comm2d, ierr)

63

Finding neighborsMPI_Cart_create creates a new communicator with thesame processes as the input communicator, but withthe speci�ed topology.The question, Who are my neighbors, can now beanswered with MPI_Cart_shift:call MPI_CART_SHIFT(comm2d, 0, 1,nbrleft, nbrright, ierr)call MPI_CART_SHIFT(comm2d, 1, 1,nbrbottom, nbrtop, ierr)The values returned are the ranks, in thecommunicator comm2d, of the neighbors shifted by �1in the two dimensions.
64

Who am I?
Can be answered withinteger coords(2)call MPI_COMM_RANK(comm1d, myrank, ierr)call MPI_CART_COORDS(comm1d, myrank, 2,$ coords, ierr)Returns the Cartesian coordinates of the callingprocess in coords.

65

Partitioning
When creating a Cartesian topology, one question is\What is a good choice for the decomposition of theprocessors?"This question can be answered with MPI_Dims_create:integer dims(2)dims(1) = 0dims(2) = 0call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)call MPI_DIMS_CREATE(size, 2, dims, ierr)

66

Other Topology Routines
MPI contains routines to translate betweenCartesian coordinates and ranks in acommunicator, and to access the propertiesof a Cartesian topology.The routine MPI_Graph_create allows thecreation of a general graph topology.

67

Why are these routines in MPI?In many parallel computer interconnects,some processors are closer to thanothers. These routines allow the MPIimplementation to provide an ordering ofprocesses in a topology that makes logicalneighbors close in the physical interconnect.� Some parallel programmers may rememberhypercubes and the e�ort that went intoassigning nodes in a mesh to processorsin a hypercube through the use of Greycodes. Many new systems have di�erentinterconnects; ones with multiple pathsmay have notions of near neighbors thatchanges with time. These routines freethe programmer from many of theseconsiderations. The reorder argument isused to request the best ordering. 68

The periods argument
Who are my neighbors if I am at the edge ofa Cartesian Mesh?

?

69

Periodic Grids
Specify this in MPI_Cart_create withdims(1) = 4dims(2) = 3periods(1) = .TRUE.periods(2) = .TRUE.reorder = .true.ndim = 2call MPI_CART_CREATE(MPI_COMM_WORLD, ndim, dims,$ periods, reorder, comm2d, ierr)

70

Nonperiodic Grids
In the nonperiodic case, a neighbor maynot exist. This is indicated by a rank ofMPI_PROC_NULL.This rank may be used in send and receivecalls in MPI. The action in both cases is as ifthe call was not made.

71

Collective Communications in MPI� Communication is coordinated among a group ofprocesses.� Groups can be constructed \by hand" with MPIgroup-manipulation routines or by using MPItopology-de�nition routines.� Message tags are not used. Di�erentcommunicators are used instead.� No non-blocking collective operations.� Three classes of collective operations:{ synchronization{ data movement{ collective computation
72

Synchronization
� MPI_Barrier(comm)� Function blocks untill all processes incomm call it.

73

Available Collective Patterns
P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

P0

P1

P2

P3

A A

A

A

A

A B C D A

B

C

D

A

B

C

D

A B C D

A B C D

A B C D

A B C D

A0 A1 A2 A3

B0 B1 B2 B3

C0 C1 C2 C3

D0 D1 D2 D3

A0 B0 C0 D0

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3

All to All

All gather

Scatter

Gather

Broadcast

Schematic representation of collective datamovement in MPI 74

Available Collective Computation Patterns
ABC

ABCD

AB

A

ABCD

Reduce

Scan

P3

P3

P0

P1

P2

P0

P1

P2

A

B

C

DP3

A

B

C

DP3

P0

P1

P2

P0

P1

P2

Schematic representation of collective datamovement in MPI
75

MPI Collective Routines� Many routines:Allgather Allgatherv AllreduceAlltoall Alltoallv BcastGather Gatherv ReduceReduceScatter Scan ScatterScatterv� All versions deliver results to all participatingprocesses.� V versions allow the chunks to have di�erent sizes.� Allreduce, Reduce, ReduceScatter, and Scan takeboth built-in and user-de�ned combinationfunctions.
76

Built-in Collective Computation Operations
MPI Name OperationMPI MAX MaximumMPI MIN MinimumMPI PROD ProductMPI SUM SumMPI LAND Logical andMPI LOR Logical orMPI LXOR Logical exclusive or (xor)MPI BAND Bitwise andMPI BOR Bitwise orMPI BXOR Bitwise xorMPI MAXLOC Maximum value and locationMPI MINLOC Minimum value and location

77

De�ning Your Own Collective Operations
MPI_Op_create(user_function, commute, op)MPI_Op_free(op)user_function(invec, inoutvec, len, datatype)The user function should performinoutvec[i] = invec[i] op inoutvec[i];for i from 0 to len-1.user_function can be non-commutative (e.g., matrixmultiply).

78

Sample user functionFor example, to create an operation that has thesame e�ect as MPI_SUM on Fortran double precisionvalues, usesubroutine myfunc(invec, inoutvec, len, datatype)integer len, datatypedouble precision invec(len), inoutvec(len)integer ido 10 i=1,len10 inoutvec(i) = invec(i) + inoutvec(i)returnendTo use, justinteger myopcall MPI_Op_create(myfunc, .true., myop, ierr)call MPI_Reduce(a, b, 1, MPI_DOUBLE_PRECISON, myop, ...)The routine MPI_Op_free destroys user-functions whenthey are no longer needed. 79

De�ning groups
All MPI communication is relative to acommunicator which contains a contextand a group. The group is just a set ofprocesses.

80

Subdividing a communicatorThe easiest way to create communicators with newgroups is with MPI_COMM_SPLIT.For example, to form groups of rows of processes
1

2

0

0 1 2 3 4
Column

RowuseMPI_Comm_split(oldcomm, row, 0, &newcomm);To maintain the order by rank, useMPI_Comm_rank(oldcomm, &rank);MPI_Comm_split(oldcomm, row, rank, &newcomm);
81

Subdividing (con't)Similarly, to form groups of columns,
1

2

0

0 1 2 3 4
Column

RowuseMPI_Comm_split(oldcomm, column, 0, &newcomm2);To maintain the order by rank, useMPI_Comm_rank(oldcomm, &rank);MPI_Comm_split(oldcomm, column, rank, &newcomm2);
82

Manipulating Groups
Another way to create a communicator with speci�cmembers is to use MPI_Comm_create.MPI_Comm_create(oldcomm, group, &newcomm);The group can be created in many ways:

83

Creating GroupsAll group creation routines create a group byspecifying the members to take from an existinggroup.� MPI_Group_incl speci�es speci�c members� MPI_Group_excl excludes speci�c members� MPI_Group_range_incl and MPI_Group_range_excluse ranges of members� MPI_Group_union and MPI_Group_intersectioncreates a new group from two existing groups.To get an existing group, useMPI_Comm_group(oldcomm, &group);Free a group withMPI_Group_free(&group);
84

Bu�ering issues
Where does data go when you send it? Onepossibility is:

Local Buffer

Local Buffer

A:

B:

Process 1 Process 2

The Network

85

Better bu�eringThis is not very e�cient. There are threecopies in addition to the exchange of databetween processes. We prefer
B:

A:

Process 1 Process 2

But this requires that either that MPI_Sendnot return until the data has been deliveredor that we allow a send operation to returnbefore completing the transfer. In this case,we need to test for completion later.
86

Blocking and Non-Blocking communication� So far we have used blocking communication:{ MPI Send does not complete until bu�er is empty(available for reuse).{ MPI Recv does not complete until bu�er is full(available for use).� Simple, but can be \unsafe":Process 0 Process 1Send(1) Send(0)Recv(1) Recv(0)Completion depends in general on size of messageand amount of system bu�ering.� Send works for small enough messages but failswhen messages get too large. Too large ranges fromzero bytes to 100's of Megabytes.
87

Some Solutions to the \Unsafe" Problem� Order the operations more carefully:Process 0 Process 1Send(1) Recv(0)Recv(1) Send(0)� Supply receive bu�er at same time as send, withMPI Sendrecv:Process 0 Process 1Sendrecv(1) Sendrecv(0)� Use non-blocking operations:Process 0 Process 1Isend(1) Isend(0)Irecv(1) Irecv(0)Waitall Waitall� Use MPI_Bsend
88

MPI's Non-Blocking OperationsNon-blocking operations return (immediately)\request handles" that can be waited on and queried:� MPI Isend(start, count, datatype, dest, tag, comm,request)� MPI Irecv(start, count, datatype, dest, tag, comm,request)� MPI Wait(request, status)One can also test without waiting: MPI_Test(request,flag, status)
89

Multiple completionsIt is often desirable to wait on multiple requests. Anexample is a master/slave program, where the masterwaits for one or more slaves to send it a message.� MPI Waitall(count, array of requests,array of statuses)� MPI Waitany(count, array of requests, index,status)� MPI Waitsome(incount, array of requests, outcount,array of indices, array of statuses)There are corresponding versions of test for each ofthese.� The MPI WAITSOME and MPI TESTSOME may be used toimplement master/slave algorithms that provide fairaccess to the master by the slaves.
90

FairnessWhat happens with this program:#include "mpi.h"#include <stdio.h>int main(argc, argv)int argc;char **argv;{int rank, size, i, buf[1];MPI_Status status;MPI_Init(&argc, &argv);MPI_Comm_rank(MPI_COMM_WORLD, &rank);MPI_Comm_size(MPI_COMM_WORLD, &size);if (rank == 0) {for (i=0; i<100*(size-1); i++) {MPI_Recv(buf, 1, MPI_INT, MPI_ANY_SOURCE,MPI_ANY_TAG, MPI_COMM_WORLD, &status);printf("Msg from %d with tag %d\n",status.MPI_SOURCE, status.MPI_TAG);}}else {for (i=0; i<100; i++)MPI_Send(buf, 1, MPI_INT, 0, i, MPI_COMM_WORLD);}MPI_Finalize();return 0;} 91

Fairness in message-passing
An parallel algorithm is fair if no processis e�ectively ignored. In the preceedingprogram, processes with low rank (likeprocess zero) may be the only one whosemessages are received.MPI makes no guarentees about fairness.However, MPI makes it possible to writee�cient, fair programs.

92

Providing FairnessOne alternative is#define large 128MPI_Request requests[large];MPI_Status statuses[large];int indices[large];int buf[large];for (i=1; i<size; i++)MPI_Irecv(buf+i, 1, MPI_INT, i,MPI_ANY_TAG, MPI_COMM_WORLD, &requests[i-1]);while(not done) {MPI_Waitsome(size-1, requests, &ndone, indices, statuses);for (i=0; i<ndone; i++) {j = indices[i];printf("Msg from %d with tag %d\n",statuses[i].MPI_SOURCE,statuses[i].MPI_TAG);MPI_Irecv(buf+j, 1, MPI_INT, j,MPI_ANY_TAG, MPI_COMM_WORLD, &requests[j]);}}
93

Providing Fairness (Fortran)One alternative isparameter(large = 128)integer requests(large);integer statuses(MPI_STATUS_SIZE,large);integer indices(large);integer buf(large);logical donedo 10 i = 1,size-110 call MPI_Irecv(buf(i), 1, MPI_INTEGER, i,* MPI_ANY_TAG, MPI_COMM_WORLD, requests(i), ierr)20 if (.not. done) thencall MPI_Waitsome(size-1, requests, ndone,indices, statuses, ierr)do 30 i=1, ndonej = indices(i)print *, 'Msg from ', statuses(MPI_SOURCE,i), ' with tag',* statuses(MPI_TAG,i)call MPI_Irecv(buf(j), 1, MPI_INTEGER, j,MPI_ANY_TAG, MPI_COMM_WORLD, requests(j), ierr)done = ...30 continuegoto 20endif
94

Exercise - Fairness
Objective: Use nonblocking communicationsComplete the program fragment on\providing fairness". Make sure that youleave no uncompleted requests. How wouldyou test your program?

95

More on nonblocking communicationIn applications where the time to send data betweenprocesses is large, it is often helpful to causecommunication and computation to overlap. This caneasily be done with MPI's non-blocking routines.For example, in a 2-D �nite di�erence mesh, movingdata needed for the boundaries can be done at thesame time as computation on the interior.MPI_Irecv(... each ghost edge ...);MPI_Isend(... data for each ghost edge ...);... compute on interiorwhile (still some uncompleted requests) {MPI_Waitany(... requests ...)if (request is a receive)... compute on that edge ...}Note that we call MPI_Waitany several times. Thisexploits the fact that after a request is satis�ed, itis set to MPI_REQUEST_NULL, and that this is a validrequest object to the wait and test routines. 96

Communication ModesMPI provides mulitple modes for sending messages:� Synchronous mode (MPI Ssend): the send does notcomplete until a matching receive has begun.(Unsafe programs become incorrect and usuallydeadlock within an MPI_Ssend.)� Bu�ered mode (MPI Bsend): the user supplies thebu�er to system for its use. (User supplies enoughmemory to make unsafe program safe).� Ready mode (MPI Rsend): user guarantees thatmatching receive has been posted.{ allows access to fast protocols{ unde�ned behavior if the matching receive is notpostedNon-blocking versions:MPI Issend, MPI Irsend, MPI IbsendNote that an MPI_Recv may receive messages sent withany send mode. 97

Bu�ered SendMPI provides a send routine that may be used whenMPI_Isend is awkward to use (e.g., lots of smallmessages).MPI_Bsend makes use of a user-provided bu�er to saveany messages that can not be immediately sent.int bufsize;char *buf = malloc(bufsize);MPI_Buffer_attach(buf, bufsize);...MPI_Bsend(... same as MPI_Send ...);...MPI_Buffer_detach(&buf, &bufsize);The MPI_Buffer_detach call does not complete until allmessages are sent.� The performance of MPI Bsend depends on theimplementation of MPI and may also depend onthe size of the message. For example, making amessage one byte longer may cause a signi�cant dropin performance. 98

Reusing the same bu�erConsider a loopMPI_Buffer_attach(buf, bufsize);while (!done) {...MPI_Bsend(...);}where the buf is large enough to hold the message inthe MPI_Bsend. This code may fail because the{void *buf; int bufsize;MPI_Buffer_detach(&buf, &bufsize);MPI_Buffer_attach(buf, bufsize);}
99

Other Point-to-Point Features
� MPI_SENDRECV, MPI_SENDRECV_REPLACE� MPI_CANCEL� Persistent communication requests

100

Datatypes and HeterogenityMPI datatypes have two main purposes� Heterogenity | parallel programsbetween di�erent processors� Noncontiguous data | structures,vectors with non-unit stride, etc.Basic datatype, corresponding to theunderlying language, are prede�ned.The user can construct new datatypes at runtime; these are called derived datatypes.
101

Datatypes in MPIElementary: Language-de�ned types (e.g.,MPI_INT or MPI_DOUBLE_PRECISION)Vector: Separated by constant \stride"Contiguous: Vector with stride of oneHvector: Vector, with stride in bytesIndexed: Array of indices (forscatter/gather)Hindexed: Indexed, with indices in bytesStruct: General mixed types (for C structsetc.)
102

Basic Datatypes (Fortran)
MPI datatype Fortran datatypeMPI_INTEGER INTEGERMPI_REAL REALMPI_DOUBLE_PRECISION DOUBLE PRECISIONMPI_COMPLEX COMPLEXMPI_LOGICAL LOGICALMPI_CHARACTER CHARACTER(1)MPI_BYTEMPI_PACKED

103

Basic Datatypes (C)MPI datatype C datatypeMPI_CHAR signed charMPI_SHORT signed short intMPI_INT signed intMPI_LONG signed long intMPI_UNSIGNED_CHAR unsigned charMPI_UNSIGNED_SHORT unsigned short intMPI_UNSIGNED unsigned intMPI_UNSIGNED_LONG unsigned long intMPI_FLOAT floatMPI_DOUBLE doubleMPI_LONG_DOUBLE long doubleMPI_BYTEMPI_PACKED
104

Vectors
1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

To specify this row (in C order), we can useMPI_Type_vector(count, blocklen, stride, oldtype,&newtype);MPI_Type_commit(&newtype);The exact code for this isMPI_Type_vector(5, 1, 7, MPI_DOUBLE, &newtype);MPI_Type_commit(&newtype);
105

Structures
Structures are described by arrays of� number of elements (array_of_len)� displacement or location (array_of_displs)� datatype (array_of_types)MPI_Type_structure(count, array_of_len,array_of_displs,array_of_types, &newtype);

106

Example: Structuresstruct {char display[50]; /* Name of display */int maxiter; /* max # of iterations */double xmin, ymin; /* lower left corner of rectangle */double xmax, ymax; /* upper right corner */int width; /* of display in pixels */int height; /* of display in pixels */} cmdline;/* set up 4 blocks */int blockcounts[4] = {50,1,4,2};MPI_Datatype types[4];MPI_Aint displs[4];MPI_Datatype cmdtype;/* initialize types and displs with addresses of items */MPI_Address(&cmdline.display, &displs[0]);MPI_Address(&cmdline.maxiter, &displs[1]);MPI_Address(&cmdline.xmin, &displs[2]);MPI_Address(&cmdline.width, &displs[3]);types[0] = MPI_CHAR;types[1] = MPI_INT;types[2] = MPI_DOUBLE;types[3] = MPI_INT;for (i = 3; i >= 0; i--)displs[i] -= displs[0];MPI_Type_struct(4, blockcounts, displs, types, &cmdtype);MPI_Type_commit(&cmdtype); 107

Strides
The extent of a datatype is (normally) thedistance between the �rst and last member.

LB UB

EXTENT

Memory locations specified by datatype

You can set an arti�cial extent by usingMPI_UB and MPI_LB in MPI_Type_struct.
108

Vectors revisitedThis code creates a datatype for an arbitrarynumber of element in a row of an arraystored in Fortran order (column �rst).int blens[2], displs[2];MPI_Datatype types[2], rowtype;blens[0] = 1;blens[1] = 1;displs[0] = 0;displs[1] = number_in_column * sizeof(double);types[0] = MPI_DOUBLE;types[1] = MPI_UB;MPI_Type_struct(2, blens, displs, types, &rowtype);MPI_Type_commit(&rowtype);To send n elements, you can useMPI_Send(buf, n, rowtype, ...);
109

Structures revisitedWhen sending an array of a structure, it is importantto ensure that MPI and the C compiler have thesame value for the size of each structure. The mostportable way to do this is to add an MPI_UB to thestructure de�nition for the end of the structure. Inthe previous example, this is/* initialize types and displs with addresses of items */MPI_Address(&cmdline.display, &displs[0]);MPI_Address(&cmdline.maxiter, &displs[1]);MPI_Address(&cmdline.xmin, &displs[2]);MPI_Address(&cmdline.width, &displs[3]);MPI_Address(&cmdline+1, &displs[4]);types[0] = MPI_CHAR;types[1] = MPI_INT;types[2] = MPI_DOUBLE;types[3] = MPI_INT;types[4] = MPI_UB;for (i = 4; i >= 0; i--)displs[i] -= displs[0];MPI_Type_struct(5, blockcounts, displs, types, &cmdtype);MPI_Type_commit(&cmdtype);
110

Interleaving dataBy moving the UB inside the data, you caninterleave data.Consider the matrix
0
1
2
3
4
5
6
7

8
9
10
11
12

14
15

16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

13We wish to send 0-3,8-11,16-19, and 24-27to process 0, 4-7,12-15,20-23, and 28-31 toprocess 1, etc. How can we do this withMPI_Scatterv?
111

An interleaved datatype
MPI_Type_vector(4, 4, 8, MPI_DOUBLE, &vec);de�nes a block of this matrix.blens[0] = 1; blens[1] = 1;types[0] = vec; types[1] = MPI_UB;displs[0] = 0; displs[1] = sizeof(double);MPI_Type_struct(2, blens, displs, types, &block);de�nes a block whose extent is just 1 entries.

112

Scattering a MatrixWe set the displacements for each block as thelocation of the �rst element in the block. This worksbecause MPI_Scatterv uses the extents to determinethe start of each piece to send.scdispls[0] = 0;scdispls[1] = 4;scdispls[2] = 32;scdispls[3] = 36;MPI_Scatterv(sendbuf, sendcounts, scdispls, block,recvbuf, nx * ny, MPI_DOUBLE, 0,MPI_COMM_WORLD);� How would use use the topology routines to makethis more general?
113

Exercises - datatypesObjective: Learn about datatypes1. Write a program to send rows of a matrix (storedin column-major form) to the other processors.Let processor 0 have the entire matrix, which hasas many rows as processors.Processor 0 sends row i to processor i.Processor i reads that row into a local array thatholds only that row. That is, processor 0 has amatrix A(N;M) while the other processors have arow B(M).(a) Write the program to handle the case wherethe matrix is square.(b) Write the program to handle a number ofcolumns read from the terminal.C programmers may send columns of a matrixstored in row-major form if they prefer.If you have time, try one of the following. If youdon't have time, think about how you wouldprogram these.2. Write a program to transpose a matrix, whereeach processor has a part of the matrix. Usetopologies to de�ne a 2-Dimensional partitioning 114

of the matrix across the processors, and assumethat all processors have the same size submatrix.(a) Use MPI_Send and MPI_Recv to send the block,the transpose the block.(b) Use MPI_Sendrecv instead.(c) Create a datatype that allows you to receivethe block already transposed.3. Write a program to send the "ghostpoints" of a2-Dimensional mesh to the neighboringprocessors. Assume that each processor has thesame size subblock.(a) Use topologies to �nd the neighbors(b) De�ne a datatype for the \rows"(c) Use MPI_Sendrecv or MPI_IRecv and MPI_Sendwith MPI_Waitall.(d) Use MPI_Isend and MPI_Irecv to start thecommunication, do some computation on theinterior, and then use MPI_Waitany to processthe boundaries as they arriveThe same approach works for generaldatastructures, such as unstructured meshes.4. Do 3, but for 3-Dimensional meshes. You willneed MPI_Type_Hvector.

Tools for writing libraries
MPI is speci�cally designed to make it easierto write message-passing libraries� Communicators solve tag/sourcewild-card problem� Attributes provide a way to attachinformation to a communicator

115

Private communicators
One of the �rst thing that a library shouldnormally do is create private communicator.This allows the library to send and receivemessages that are known only to the library.MPI_Comm_dup(old_comm, &new_comm);

116

AttributesAttributes are data that can be attached toone or more communicators.Attributes are referenced by keyval. Keyvalsare created with MPI_KEYVAL_CREATE.Attributes are attached to a communicatorwith MPI_Attr_put and their values accessedby MPI_Attr_get.� Operations are de�ned for what happensto an attribute when it is copied (by creatingone communicator from another) or deleted(by deleting a communicator) when thekeyval is created.
117

What is an attribute?
In C, an attribute is a pointer of type void *.You must allocate storage for the attributeto point to (make sure that you don't usethe address of a local variable).In Fortran, it is a single INTEGER.

118

Examples of using attributes
� Forcing sequential operation� Managing tags

119

Sequential Sections#include "mpi.h"#include <stdlib.h>static int MPE_Seq_keyval = MPI_KEYVAL_INVALID;/*@MPE_Seq_begin - Begins a sequential section of code.Input Parameters:. comm - Communicator to sequentialize.. ng - Number in group. This many processes are allowedto executeat the same time. Usually one.@*/void MPE_Seq_begin(comm, ng)MPI_Comm comm;int ng;{int lidx, np;int flag;MPI_Comm local_comm;MPI_Status status;/* Get the private communicator for the sequentialoperations */if (MPE_Seq_keyval == MPI_KEYVAL_INVALID) {MPI_Keyval_create(MPI_NULL_COPY_FN,MPI_NULL_DELETE_FN,&MPE_Seq_keyval, NULL);} 120

Sequential Sections IIMPI_Attr_get(comm, MPE_Seq_keyval, (void *)&local_comm,&flag);if (!flag) {/* This expects a communicator to be a pointer */MPI_Comm_dup(comm, &local_comm);MPI_Attr_put(comm, MPE_Seq_keyval,(void *)local_comm);}MPI_Comm_rank(comm, &lidx);MPI_Comm_size(comm, &np);if (lidx != 0) {MPI_Recv(NULL, 0, MPI_INT, lidx-1, 0, local_comm,&status);}/* Send to the next process in the group unless weare the last process in the processor set */if ((lidx % ng) < ng - 1 && lidx != np - 1) {MPI_Send(NULL, 0, MPI_INT, lidx + 1, 0, local_comm);}}
121

Sequential Sections III/*@MPE_Seq_end - Ends a sequential section of code.Input Parameters:. comm - Communicator to sequentialize.. ng - Number in group.@*/void MPE_Seq_end(comm, ng)MPI_Comm comm;int ng;{int lidx, np, flag;MPI_Status status;MPI_Comm local_comm;MPI_Comm_rank(comm, &lidx);MPI_Comm_size(comm, &np);MPI_Attr_get(comm, MPE_Seq_keyval, (void *)&local_comm,&flag);if (!flag)MPI_Abort(comm, MPI_ERR_UNKNOWN);/* Send to the first process in the next group OR to thefirst processin the processor set */if ((lidx % ng) == ng - 1 || lidx == np - 1) {MPI_Send(NULL, 0, MPI_INT, (lidx + 1) % np, 0,local_comm);}if (lidx == 0) {MPI_Recv(NULL, 0, MPI_INT, np-1, 0, local_comm,&status);}} 122

Comments on sequential sections
� Note use of MPI_KEYVAL_INVALID todetermine to create a keyval� Note use of
ag on MPI_Attr_get todiscover that a communicator has noattribute for the keyval

123

Example: Managing tagsProblem: A library contains many objectsthat need to communicate in ways that arenot known until runtime.Messages between objects are kept separateby using di�erent message tags. How arethese tags chosen?� Unsafe to use compile time values� Must allocate tag values at runtimeSolution:Use a private communicator and use anattribute to keep track of available tags inthat communicator.
124

Caching tags on communicator#include "mpi.h"static int MPE_Tag_keyval = MPI_KEYVAL_INVALID;/* Private routine to delete internal storage when acommunicator is freed.*/int MPE_DelTag(comm, keyval, attr_val, extra_state)MPI_Comm *comm;int *keyval;void *attr_val, *extra_state;{free(attr_val);return MPI_SUCCESS;}
125

Caching tags on communicator II/*@MPE_GetTags - Returns tags that can be used incommunication with acommunicatorInput Parameters:. comm_in - Input communicator. ntags - Number of tagsOutput Parameters:. comm_out - Output communicator. May be 'comm_in'.. first_tag - First tag available@*/int MPE_GetTags(comm_in, ntags, comm_out, first_tag)MPI_Comm comm_in, *comm_out;int ntags, *first_tag;{int mpe_errno = MPI_SUCCESS;int tagval, *tagvalp, *maxval, flag;if (MPE_Tag_keyval == MPI_KEYVAL_INVALID) {MPI_Keyval_create(MPI_NULL_COPY_FN, MPE_DelTag,&MPE_Tag_keyval, (void *)0);}
126

Caching tags on communicator IIIif (mpe_errno = MPI_Attr_get(comm_in, MPE_Tag_keyval,&tagvalp, &flag))return mpe_errno;if (!flag) {/* This communicator is not yet known to this system,so we dup it and setup the first value */MPI_Comm_dup(comm_in, comm_out);comm_in = *comm_out;MPI_Attr_get(MPI_COMM_WORLD, MPI_TAG_UB, &maxval,&flag);tagvalp = (int *)malloc(2 * sizeof(int));printf("Mallocing address %x\n", tagvalp);if (!tagvalp) return MPI_ERR_EXHAUSTED;tagvalp = *maxval;MPI_Attr_put(comm_in, MPE_Tag_keyval, tagvalp);return MPI_SUCCESS;}
127

Caching tags on communicator IV
*comm_out = comm_in;if (*tagvalp < ntags) {/* Error, out of tags. Another solution would be to doan MPI_Comm_dup. */return MPI_ERR_INTERN;}*first_tag = *tagvalp - ntags;*tagvalp = *first_tag;return MPI_SUCCESS;}

128

Caching tags on communicator V/*@MPE_ReturnTags - Returns tags allocated with MPE_GetTags.Input Parameters:. comm - Communicator to return tags to. first_tag - First of the tags to return. ntags - Number of tags to return.@*/int MPE_ReturnTags(comm, first_tag, ntags)MPI_Comm comm;int first_tag, ntags;{int *tagvalp, flag, mpe_errno;if (mpe_errno = MPI_Attr_get(comm, MPE_Tag_keyval,&tagvalp, &flag))return mpe_errno;if (!flag) {/* Error, attribute does not exist in this communicator*/ return MPI_ERR_OTHER;}if (*tagvalp == first_tag)*tagvalp = first_tag + ntags;return MPI_SUCCESS;} 129

Caching tags on communicator VI
/*@MPE_TagsEnd - Returns the private keyval.@*/int MPE_TagsEnd(){MPI_Keyval_free(&MPE_Tag_keyval);MPE_Tag_keyval = MPI_KEYVAL_INVALID;}

130

Commentary
� Use MPI_KEYVAL_INVALID to detect whenkeyval must be created� Use flag return from MPI_ATTR_GET todetect when a communicator needs to beinitialized

131

Exercise - Writing librariesObjective: Use private communicators and attributesWrite a routine to circulate data to the next process,using a nonblocking send and receive operation.void Init_pipe(comm)void ISend_pipe(comm, bufin, len, datatype, bufout)void Wait_pipe(comm)A typical use isInit_pipe(MPI_COMM_WORLD)for (i=0; i<n; i++) {ISend_pipe(comm, bufin, len, datatype, bufout);Do_Work(bufin, len);Wait_pipe(comm);t = bufin; bufin = bufout; bufout = t;}What happens if Do_Work calls MPI routines?� What do you need to do to clean up Init pipe?� How can you use a user-de�ned topology todetermine the next process? (Hint: see MPI Topo testand MPI Cartdim get.) 132

MPI Objects
� MPI has a variety of objects(communicators, groups, datatypes, etc.)that can be created and destroyed. Thissection discusses the types of these data andhow MPI manages them.� This entire chapter may be skipped bybeginners.

133

The MPI ObjectsMPI Request Handle for nonblockingcommunication, normally freed by MPI ina test or waitMPI Datatype MPI datatype. Free withMPI_Type_free.MPI Op User-de�ned operation. Free withMPI_Op_free.MPI Comm Communicator. Free withMPI_Comm_free.MPI Group Group of processes. Free withMPI_Group_free.MPI Errhandler MPI errorhandler. Free withMPI_Errhandler_free. 134

When should objects be freed?
Consider this codeMPI_Type_vector(ly, 1, nx, MPI_DOUBLE, &newx1);MPI_Type_hvector(lz, 1, nx*ny*sizeof(double), newx1,&newx);MPI_Type_commit(&newx);(This creates a datatype for one face of a 3-Ddecomposition.) When should newx1 be freed?

135

Reference counting
MPI keeps track of the use of an MPI object, andonly truely destroys it when no-one is using it. newx1is being used by the user (the MPI_Type_vector thatcreated it) and by the MPI_Datatype newx that uses it.If newx1 is not needed after newx is de�ned, it shouldbe freed:MPI_Type_vector(ly, 1, nx, MPI_DOUBLE, &newx1);MPI_Type_hvector(lz, 1, nx*ny*sizeof(double), newx1,&newx);MPI_Type_free(&newx1);MPI_Type_commit(&newx);

136

Why reference countsWhy not just free the object?Consider this library routine:void MakeDatatype(nx, ny, ly, lz, MPI_Datatype *new){MPI_Datatype newx1;MPI_Type_vector(ly, 1, nx, MPI_DOUBLE, &newx1);MPI_Type_hvector(lz, 1, nx*ny*sizeof(double), newx1,new);MPI_Type_free(&newx1);MPI_Type_commit(new);}Without the MPI_Type_free(&newx1), it would be veryawkward to later free newx1 when new was freed.
137

Tools for evaluating programs
MPI provides some tools for evaluating theperformance of parallel programs.These are� Timer� Pro�ling interface

138

The MPI TimerThe elapsed (wall-clock) time between twopoints in an MPI program can be computedusing MPI_Wtime:double t1, t2;t1 = MPI_Wtime();...t2 = MPI_Wtime();printf("Elapsed time is %f\n", t2 - t1);The value returned by a single call toMPI_Wtime has little value.� The times are local; the attributeMPI WTIME IS GLOBAL may be used to determineif the times are also synchronized with eachother for all processes in MPI COMM WORLD. 139

Pro�ling� All routines have two entry points: MPI ... andPMPI� This makes it easy to provide a single level oflow-overhead routines to intercept MPI callswithout any source code modi�cations.� Used to provide \automatic" generation of trace�les.
MPI_Send

PMPI_Send

MPI_Bcast

MPI_Send
PMPI_Send

MPI_Send

MPI_Bcast

User Program MPI LibraryProfile Librarystatic int nsend = 0;int MPI_Send(start, count, datatype, dest, tag, comm){nsend++;return PMPI_Send(start, count, datatype, dest, tag, comm)}
140

Writing pro�ling routinesThe MPICH implementation contains a program forwriting wrappers.This description will write out each MPI routine thatis called.:#ifdef MPI_BUILD_PROFILING#undef MPI_BUILD_PROFILING#endif#include <stdio.h>#include "mpi.h"{{fnall fn_name}}{{vardecl int llrank}}PMPI_Comm_rank(MPI_COMM_WORLD, &llrank);printf("[%d] Starting {{fn_name}}...\n",llrank); fflush(stdout);{{callfn}}printf("[%d] Ending {{fn_name}}\n", llrank);fflush(stdout);{{endfnall}}The commandwrappergen -w trace.w -o trace.cconverts this to a C program. The complie the �le`trace.c' and insert the resulting object �le into yourlink line:cc -o a.out a.o ... trace.o -lpmpi -lmpi 141

Another pro�ling exampleThis version counts all calls and the number of bytes sent withMPI_Send, MPI_Bsend, or MPI_Isend.#include "mpi.h"{{foreachfn fn_name MPI_Send MPI_Bsend MPI_Isend}}static long {{fn_name}}_nbytes_{{fileno}};{{endforeachfn}}{{forallfn fn_name MPI_Init MPI_Finalize MPI_Wtime}}int{{fn_name}}_ncalls_{{fileno}};{{endforallfn}}{{fnall this_fn_name MPI_Finalize}}printf("{{this_fn_name}} is being called.\n");{{callfn}}{{this_fn_name}}_ncalls_{{fileno}}++;{{endfnall}}{{fn fn_name MPI_Send MPI_Bsend MPI_Isend}}{{vardecl int typesize}}{{callfn}}MPI_Type_size({{datatype}}, (MPI_Aint *)&{{typesize}});{{fn_name}}_nbytes_{{fileno}}+={{typesize}}*{{count}}{{fn_name}}_ncalls_{{fileno}}++;{{endfn}} 142

Another pro�ling example (con't)
{{fn fn_name MPI_Finalize}}{{forallfn dis_fn}}if ({{dis_fn}}_ncalls_{{fileno}}) {printf("{{dis_fn}}: %d calls\n",{{dis_fn}}_ncalls_{{fileno}});}{{endforallfn}}if (MPI_Send_ncalls_{{fileno}}) {printf("%d bytes sent in %d calls with MPI_Send\n",MPI_Send_nbytes_{{fileno}},MPI_Send_ncalls_{{fileno}});}{{callfn}}{{endfn}}

143

Generating and viewing log �lesLog �les that contain a history of aparallel computation can be very valuablein understanding a parallel program. Theupshot and nupshot programs, provided inthe MPICH and MPI-F implementations,may be used to view log �les

144

Generating a log �leThis is very easy with the MPICHimplementation of MPI. Simply replace -lmpiwith -llmpi -lpmpi -lm in the link line foryour program, and relink your program. Youdo not need to recompile.On some systems, you can get a real-timeanimation by using the libraries -lampi -lmpe-lm -lX11 -lpmpi.Alternately, you can use the -mpilog or-mpianim options to the mpicc or mpif77commands.
145

Connecting several programs together
MPI provides support for connection separatemessage-passing programs together throughthe use of intercommunicators.

146

Sending messages between di�erent programsPrograms share MPI_COMM_WORLD.Programs have separate and disjointcommunicators.
Comm1 Comm2

App1 App2

MPI_COMM_WORLD

Comm_intercomm

147

Exchanging data between programs
� Form intercommunicator(MPI_INTERCOMM_CREATE)� Send dataMPI_Send(..., 0, intercomm)MPI_Recv(buf, ..., 0, intercomm);MPI_Bcast(buf, ..., localcomm);More complex point-to-point operationscan also be used

148

Collective operations
Use MPI_INTERCOMM_MERGE to create anintercommunicator.

149

Final Comments
Additional features of MPI not covered inthis tutorial� Persistent Communication� Error handling

150

Sharable MPI Resources� The Standard itself:{ As a Technical report: U. of Tennessee.report{ As postscript for ftp: at info.mcs.anl.gov inpub/mpi/mpi-report.ps.{ As hypertext on the World Wide Web:http://www.mcs.anl.gov/mpi{ As a journal article: in the Fall issue of theJournal of Supercomputing Applications� MPI Forum discussions{ The MPI Forum email discussions and bothcurrent and earlier versions of the Standardare available from netlib.� Books:{ Using MPI: Portable Parallel Programmingwith the Message-Passing Interface, byGropp, Lusk, and Skjellum, MIT Press, 1994{ MPI Annotated Reference Manual, by Otto,et al., in preparation. 151

Sharable MPI Resources, continued� Newsgroup:{ comp.parallel.mpi� Mailing lists:{ mpi-comm@mcs.anl.gov: the MPI Forumdiscussion list.{ mpi-impl@mcs.anl.gov: the implementors'discussion list.� Implementations available by ftp:{ MPICH is available by anonymous ftp frominfo.mcs.anl.gov in the directorypub/mpi/mpich, �le mpich.tar.Z.{ LAM is available by anonymous ftp fromtbag.osc.edu in the directory pub/lam.{ The CHIMP version of MPI is available byanonymous ftp from ftp.epcc.ed.ac.uk in thedirectory pub/chimp/release.� Test code repository:{ ftp://info.mcs.anl.gov/pub/mpi/mpi-test 152

MPI-2� The MPI Forum (with old and new participants)has begun a follow-on series of meetings.� Goals{ clarify existing draft{ provide features users have requested{ make extensions, not changes� Major Topics being considered{ dynamic process management{ client/server{ real-time extensions{ \one-sided" communication (put/get, activemessages){ portable access to MPI system state (fordebuggers){ language bindings for C++ and Fortran-90� Schedule{ Dynamic processes, client/server by SC '95{ MPI-2 complete by SC '96 153

Summary
� The parallel computing community has cooperatedto develop a full-featured standard message-passinglibrary interface.� Implementations abound� Applications beginning to be developed or ported� MPI-2 process beginning� Lots of MPI material available

154

