
Ml

he single-chip i860
executes parallel instructio
architectural concepts.

mm x 15 mm processor (see Fi
floating-point, and graphics pe
eration CAD tools and 1-micrometer semic

To accommodate our per
between blocks for integer operations, floating-point operations, and in-
struction and data cache memories. Inclusion of the RISC (reduced instruc-
tion set computing) core, floating-point units, and caches on one chip lets
us design wider internal buses, eliminate interchip communication over-
head, and offer higher performance. As a result, the i860 avoids off-chip
delays and allows users to scale the clock beyond the current 33- and 40-
MHz speeds.

We designed the i860 for performance-driven applications such as work-
stations, minicomputers, application accelerators for existing processors,
and parallel supercomputers. The i860 CPU design began with the specifi-
cation of a general-purpose RISC integer core. However, we felt it neces-
sary to go beyond the traditional 32-bit, one-instruction-per-clock RISC
processor. A 64-bit architecture provides the data and instruction band-
width needed to support multiple operations in each clock cycle. The
balanced performance between integer and floating-point computations
produces the raw computing power required to support demanding applica-
tions such as modeling and simulations.

Finally, we recognized a synergistic opportunity to incorporate a 3D
graphics unit that supports interactive visualization of results. The architec-
ture of the i860 CPU provides a complete platform for software vendors
developing i860 applications.

T

Architecture overview. The i860 CPU includes the following units on

the RISC integer core,
a memory management unit with paging,
a floating-point control unit,
a floating-point adder unit,
a floating-point multiplier unit,
a 3D graphics unit,

one chip (see Figure 2):

A million-
transistor budget
helps this RISC
deliver balanced
MIPS, Mflops,
and graphics
performance
with no data
bottlenecks.

Les Kohn
Neal Margulis

Intel Corp.

0272- 1732/89/0800-0015$01 .O 0 1989 IEEE August 1989 15

Intel 860

Figure 1. Die photograph of the i860 CPU.

a 4-Kbyte instruction cache,
an 8-Kbyte data cache, and
a bus control unit.

Parallel execution. To support the performance
available from multiple functional units, the i860 CPU
issues up to three operations each clock cycle. In single-
instruction mode, the processor issues either a RISC
core instruction or a floating-point instruction each
cycle. This mode is useful when the instruction per-
forms scalar operations such as operating system
routines.

In dual-instruction mode, the RISC core fetches two
32-bit instructions each clock cycle using the 64-bit-
wide instruction cache. One 32-bit instruction moves to
the RISC core, and the other moves to the floating-point
section for parallel execution. This mode allows the
RISC core to keep the floating-point units fed by fetch-
ing and storing information and performing loop con-
trol, while the floating-point section operates on the
data.

The floating-point instructions include a set of op-
erations that initiate both an add and a multiply. The
add and multiply. combined with the integer operation.
result in three operations each clock cycle. With this
fine-grained parallelism, the architecture can support
traditional vector processing by software libraries that
implement a vector instruction set. The inner loops of
the software vector routines operate up to the peak
floating-point hardware rate of 80 million floating-
point operations per second. Consistent with RISC
philosophy, the i860 CPU achieves the performance of
hardware vector instructions without the complex
control logic of hardware vector instructions. The fine-
grained parallelism can also be used in other parallel
algorithms that cannot be vectorized.

Register and addressing model. The i860 micro-
processor contains separate register files for the integer
and floating-point units to support parallel execution.
In addition to these register files, as can be seen in
Figure 3 on page 18, are six control registers and four
special-purpose registers. The RISC core contains the
integer register file of thirty-two 32-bit registers, des-
ignated RO through R3 1 and used for storing addresses
or data. The floating-point control unit contains a sepa-
rate set of thirty-two 32-bit floating-point registers
designated FO through F31. These registers can be
addressed individually, as sixteen 64-bit registers, or as
eight 128-bit registers. The integer registers contain
three ports. Five ports in the floating-point registers
allow them to be used as a data staging area for perform-
ing loads and stores in parallel with floating-point
operations.

The i860 operates on standard integer and floating-
point data, as well as pixel data formats for graphics
operations. All operations on the integer registers exe-
cute on 32-bit data as signed or unsigned operations and
additional add and subtract instructions that operate on
64-bit-long words. All 64-bit operations occur in the
floating-point registers.

The i860 microprocessor supports a paged virtual
address space of four gigabytes. Therefore, data and
instructions can be stored anywhere in that space, and
multibyte data values are addressed by specifying their
lowest addressed byte. Data must be accessed on
boundaries that are multiples of their size. For example,
two-byte datamust be aligned to an address divisible by
two, four-byte data on an address divisible by four, and
so on, up to 16-byte data values. Data in memory can be
stored in either little-endian or big-endian format.
(Little-endian format sends the least significant byte,
D7-DO, first to the lowest memory address, while big-
endian sends the most significant byte first.) Code is
always stored in little-endian format. Support for big-
endian data allows the processor to operate on data
produced by a big-endian processor, without perform-
ing a lengthy data conversion.

16 IEEE MICRO

External + ,
address 32 bits

-t

64,'

Instruction cache
(4 Kbytes)

t
Floating-point instruction

" 128

I1

Core instruction 32

T

Data cache
management (8 Kbytes)

Cache data

I1
' 3 2 " 3 2

T T

j
i

Bus control
unit

Core registers Floating-point registers

RISC core

64,.

Floating-point
control unit

64 64,.

SRC2 I I
I I I

t II 1 . 1

KL
T KR

~

T

Merge

Adder unit Multiplier unit

Figure 2. Functional units and data paths of the i860 microprocessor.

RISC core
The RISC core fetches both integer and floating-

point instructions. It executes load, store, integer, bit,
and control transfer instructions. Table 1 on page 19
lists the full instruction set with the 42 core unit instruc-
tions and their mnemonics in the left column. All in-
structions are 32 bits long and follow the load/store,
three-operand style of traditional RISC designs. Only

load and store instructions operate on memory; all other
instructions operate on registers. Most instructions
allow users to specify two source registers and a third
register for storing the results.

A key feature of the core unit is its ability to execute
most instructions in one clock cycle. The RISC core
contains a pipeline consisting of four stages: fetch,
decode, execute, and write. We used several techniques
to hide clock cycles of instructions that may take more

August 1989 17

Intel i860

F1

time to complete. Integer register loads from memory
take one execution cycle, and the next instruction can
begin on the following cycle.

The processor uses a scoreboarding technique to
guarantee proper operation of the code and allow the
highest possible performance. The scoreboard keeps a
history of which registers await data from memory. The
actual loading of data takes one clock cycle if it is held
in the cache memory buffer available for ready access,
but several cycles if it is in main memory. Using
scoreboarding, the i860 microprocessor continues
execution unless a subsequent instruction attempts to
use the data before it is loaded. This condition would
cause execution to freeze. An optimizing compiler can
organize the code so that freezing rarely occurs by not
referencing the load data in the following cycle. Be-
cause the hardware implements scoreboarding, it is
never necessary to insert NO-OP instructions.

FO

Integer registers
31 0

R1
R2 F3

t R3
R4

F2

R5
R6

F15

. .-

R7
R 8 F14 1

I R9 I
F15
F17
F19 R10

R I 1

F14
F16
F18

I R14 I

, , .

F19

R15

I

t18

I R19 I

F21

R20
R21

F20

R22
R23

F23

R27
R28

F22

63

F25
F27
F29

We included several control flow optimizations in
the core instruction set. The conditional branch instruc-
tions have variations with and without a delay slot. A
delay slot allows the processor to execute an instruction
following a branch while it is fetching from the branch
target. Having both delayed and nondelayed variations
of branch instructions allows the compiler to optimize
the code easily, whether a branch is likely to be taken or
not. Test and branch instructions execute in one clock
cycle, a savings of one cycle when testing special cases.
Finally, another one-cycle loop control instruction
usefully handles tight loops, such as those in vector
routines.

Instead of providing a limited set of locked opera-
tions, the RISC core provides lock and unlock instruc-
tions. With these two instructions a sequence of up to
32 instructions can be interlocked for multiprocessor
synchronization. Thus, traditional test and set opera-

F24
F26
F28

Floating-point registers
32 31 0

F10
F12 F13

Special-purpose floating-point registers

KR
KL
r

Merge

Control registers
Page directory base

Data breakpoint
Floating-point status

Figure 3. Register set.

18 IEEE MICRO

Table 1.
Instruction-set summary.

Llnemonic Description Mnemonic Description

Zore unit
Load and store instructions
LD.X Load integer
3T.X Store integer
FLD.Y F-P load
?FLD.Z Pipelined F-P load
FST.Y F-P store
PST.D Pixel store
Register-to-register moves
lXFR
FXFR
integer arithmetic instructions
4DDU Add unsigned
4DDS Add signed
SUBU Subtract unsigned
SUBS Subtract signed
Shift instructions
SHL Shift left
SHR Shift right
SHRA Shift right arithmetic
SHRD Shift right double
Logical instructions
4ND Logical AND
4NDH Logical AND high
4NDNOT Logical AND NOT
4NDNOTH Logical AND NOT high
3 R Logical OR
3RH Logical OR high
)<OR Logical exclusive OR
YORH Logical exclusive OR high
Zontrol-transfer instructions
rRAP Software trap
INTOVR
BR Branch direct
SRI Branch indirect
BC Branch on CC
BC.T Branch on CC taken
3NC Branch on not CC
BNC.T
3 TE Branch if equal
BTNE Branch if not equal
BLA
CALL Subroutine call
CALLI Indirect subroutine call
System control instructions
FLUSH Cache flush
LD.C Load from control register
ST.C Store to control register
LOCK Begin interlocked sequence
UNLOCK End interlocked sequence

Transfer integer to F-P register
Transfer F-P to integer register

Software trap on integer overflow

Branch on not CC taken

Branch on LCC and add

Floating-point unit
Floating-point multiplier instructions
FMUL.P F-P multiply
PFMUL.P Pipelined F-P multiply
PFMUL3.DD Three-stage pipelined F-P multiply
FMLOW .P F-P multiply low
FRCP.P F-P reciprocal
FRSQR . P
Floating-point adder instructions
FADD.P F-P add
PFADD. P Pipelined F-P add
FSUB.P F-P subtract
PFSUB.P Pipelined F-P subtract
PFGT.P Pipelined F-P greater-than compare
PFEQ.P Pipelined F-P equal compare
F1X.P F-P to integer conversion
PF1X.P
FTRUNC.P F-P to integer truncation
PFTRUNC.P
PFLE.P
PAMOV F-P adder move
PFAMOV Pipelined F-P adder move
Dual-operation instructions
PFAM.P
PFSM.P
PFMAM
PFMSM
Long integer instructions
FLSUB.Z Long-integer subtract
PFLSUB.Z Pipelined long-integer subtract
FLADD.Z Long-integer add
PFLADD.Z Pipelined long-integer add
Graphics instructions
FZCHKS 16-bit z-buffer check
PFZCHKS Pipelined 16-bit ,--buffer check
FZCHLD 32-bit z-buffer check
PFZCHLD Pipelined 32-bit z-buffer check
FADDP Add with pixel merge
PFADDP Pipelined add with pixel merge
FADDZ Add with z merge
PFADDZ Pipelined add with 2 merge
FORM OR with merge register
PFORM Pipelined OR with merge register
Assembler pseudo-operations
MOV Integer register-register move
FM0V.Q F-P register-register move
PFM0V.Q Pipelined F-P register-register move
NOP Core no-operation
FNOP F-P no-operation

F-P reciprocal square root

Pipelined F-P to integer conversion

Pipelined F-P to integer truncation
Pipelined F-P less than or equal

Pipelined F-P add and multiply
Pipelined F-P subtract and multiply
Pipelined F-P multiply with add
Pipelined F-P multiply with subtract

cc Condition code
F-P Floating-point
LCC Load condition code

August 1989 19

Intel i860

tions as well as more sophisticated operations, such as
compare and swap, can be performed.

The RISC core also executes a pixel store instruc-
tion. This instruction operates in conjunction with the
graphics unit to eliminate hidden surfaces. Other in-
structions transfer integer and floating-point registers,
examine and modify the control registers, and flush the
data cache.

The six control registers accessible by core instruc-
tions are the

PSR (processor status),
EPSR (extended processor status),
DB (data breakpoint),
FIR (fault instruction),
Dirbase (directory base), and
FSR (floating-point status) registers.

The PSR contains state information relevant to the
current process, such as trap-related and pixel informa-
tion. The EPSR contains additional state information
for the current process and information such as the
processor type, stepping, and cache size. The DB reg-
ister generates data breakpoints when the breakpoint is
enabled and the address matched. The FIR stores the
address of the instruction that causes a trap. The Dir-
base register contains the control information for cach-
ing, address translation, and bus options. Finally, the
FSR contains the floating-point trap and rounding-
mode status for the current process. The four special-
purpose registers are used with the dual-operation
floating-point instructions (described later).

The core unit executes all loads and stores, including
those to the floating-point registers. Two types of float-
ing-point loads are available: FLD (floating-point load)
and PFLD (pipelined floating-point load). The FLD
instruction loads the floating-point register from the
cache, or loads the data from memory and fills the cache
line if the data is not in the cache. Up to four floating-
point registers can be loaded from the cache in one
clock cycle. This ability to perform 128-bit loads or
stores in one clock cycle is crucial to supplying the data
at the rate needed to keep the floating-point units
executing. The FLD instruction processes scalar
floating-point routines, vector data that can fit entirely
in the cache, or sections of large data structures that are
going to be reused.

For accessing data structures too large to fit into the
on-chip cache, the core uses the PFLD instruction. The
pipelined load places data directly into the floating-
point registers without placing it in the data cache on a
cache miss. This operation avoids displacing the data
already in the cache that will be reused. Similarly on a
store miss, the data writes through to memory without
allocating a cache block. Thus, we avoid data cache
thrashing, a crucial factor in achieving high sustained
performance in large vector calculations.

PFLD also allows up to three accesses to be issued on

the pipelined external bus before the data from the first
cache miss is returned. The pipelined loads occur di-
rectly from memory and do not cause extra bus cycles
to fill the cache line, avoiding bus accesses to data that
is not needed. The full bus bandwidth of the external
bus can be used even though cache misses are being
processed. Autoincrement addressing, with an arbi-
trary increment, increases the flexibility and perform-
ance for accessing data structures.

Memory management
The i860’s on-chip memory management unit imple-

ments the basic features needed for paged virtual
memory management and page-level protection. We
intentionally duplicated the memory management tech-
nique in the 386 and 486 microprocessors’ paging
system. In this way we can be sure that the processors
easily exist in a common operating environment. The
similar MMUs are also useful for reusing paging and
virtual memory software that is written in C.

The address translation process maps virtual address
space onto actual address space in fixed-size blocks
called pages. While paging is enabled, the processor
translates a linear address to a physical address using
page tables. As used in mainframes, the i860 CPU page
tables are arranged in a two-level hierarchy. (See Fig-
ure 4.) The directory table base (DTB), which is part of
the Dirbase register, points to the page directory. This
one-page-long directory contains address entries for
1,024 page tables. The page tables are also one page
long, and their entries describe 1,024 pages. Each page
is 4 Kbytes in size.

Figure 4 also shows the translation from a virtual
address to a physical address. The processor uses the
upper 10 bits of the linear address as an index into the
directory. Each directory entry contains 20 bits of
addressing information, part of which contains the
address of a page table. The processor uses these 20 bits
and the middle 10 bits of the linear address to form the
page table address. The address contents of the page
table entry and the lower 12 bits (nine address bits and
the byte enables) of the linear address form the 32-bit
physical address.

The processor creates the paging tables and stores
them in memory when it creates the process. If the
processor had to access these page tables in memory
each time that a reference was made, performance
would suffer greatly. To save the overhead of the page
table lookups, the processor automatically caches
mapping information for the 64 recently used pages
in an on-chip, four-way, set-associative translation
lookaside buffer. The TLB’s 64 entries cover 4 Kbytes,
each providing a total cover of 256 Kbytes of memory
addresses. The TLB can be flushed by setting a bit in the
Dirbase register.

20 IEEEMICRO

Dir Page Off set

Physical
address b

Page directory Page table

Figure 4. Virtual-to-physical address translation.

A

~~

Writable
User
Write-through

Page frame address 31 . . . 12 Available X X D A E

Cache disable
Accessed

Available for systems programmer user

Dirty
(Reserved)

U W P

~~

Figure 5. Format of a page table entry. (X indicates Intel reserved; do not use.)

Only when the processor does not find the mapping
information for a page in the TLB does it perform a
page table lookup from information stored in memory.
When a TLB miss does occur, the processor performs
the TLB entry replacement entirely in hardware. The
hardware reads the virtual-to-physical mapping infor-
mation from the page directory and the page table
entries, and caches this information in the TLB.

The format of a page table entry can be seen in Figure
5. Paging protects supervisor memory from user ac-
cesses and also permits write protection of pages. The
U (user) and W (write) bits control the access rights.
The operating system can allow a user program to have
read and write, read-only, or no access to a given page
or page group. If a memory access violates the page
protection attributes, such as U-level code writing a

August 1989 21

Intel i860

read-only page, the system generates an exception.
While at the user level, the system ignores store control
instructions to certain control registers.

The U bit of the PSR is set to 0 when executing at the
supervisor level, in which all present pages are read-
able. Normally, at this level, all pages are also writable.
To support a memory management optimization called
copy-on-write, the processor sets the write-protection
(WP) bit of the EPSR. With WP set, any write to a page
whose W bit is not set causes a trap, allowing an
operating system to share pages between tasks without
making a new copy of the page until it is written.

Of the two remaining control bits, cache disable
(CD) and write through (WT), one is reflected on the
output pin for a page table bit (PTB), dependent on the
setting of the page table bit mode (PBM) in EPSR. The
WT bit, CD bit, and KEN# cache enable pin are inter-
nally NORed to determine “cachability.” If either of
these bits is set to one, the processor will not cache that
page of data. For systems that use a second-level cache,
these bits can be used to manage a second-level coher-
ent cache, with no shared data cached on chip. In
addition to controlling cachability with software, the
KEN# hardware signal can be used to disable cache
reads.

Floating-point unit
Floating-point unit instructions, as listed in Table 1 ,

support both single-precision real and double-preci-
sion real data. Both types follow the ANSI/IEEE 754
standard.’ The i860 CPU hardware implements all four
modes of IEEE rounding. The special values infinity,
NaN (not a number), indefinite, and denormal generate
a trap when encountered; and the trap handler produces
an IEEE-standard result. The double-precision real
data occupies two adjacent floating-point registers with
bits 31 . . . 0 stored in an even-numbered register and
bits 63 . . . 32 stored in the adjacent, higher odd-
numbered register.

The floating-point unit includes three-stage-pipe-
lined add and multiply units. For single-precision data
each unit can produce one result per clock cycle for a
peak rate of 80 Mflops at a 40-MHz clock speed. For
double-precision data, the multiplier can produce a
result every other cycle. The adder produces a result
every cycle, for a peak rate of 60 million floating-point
operations per second. The double-precision peak
number is 40 Mflops if an algorithm has an even
distribution of multiplies and adds. Reducing the
double-precision multiply rate saves half of the multi-
plier tree and is consistent with the data bandwidth
available for double-precision operations.

To save silicon area, we did not include a floating-
point divide unit. Instead, software performs floating-
point divide and square-root operations. Newton-Ra-
phson algorithms use an 8-bit seed provided by a

DO 10, I = 1 , 100
10 X = X * A + C

FMUL X, A, temp
FADD temp, C, X

1 result per 6 clock cycles
(a)

DO 10, I = 1, 100
X[I] = A[I] * B[I] + C 10

M12TPM A[I], B[I], XII - 61

1 result per clock cycle
(b)

Figure 6. Floating-point execution models: data-de-
pendent code in scalar mode (a) and vector code in
pipeline mode (b).

SRC1 SRC2 RDEST

r-7 Multiplier unit

Result

Adder unit

Result

Figure 7. Dual-operation data paths.

22 IEEEMICRO

31 0

63

CORE-OP

CORE-OP

CORE-OP

hardware lookup table. Full IEEE rounding can be
implemented by using an instruction that returns the
low-order bits of a floating-point multiply. Therefore
these algorithms can take advantage of the pipeline and
allow 16-bit reciprocals used in many graphics calcula-
tions to be performed either in 10 clock cycles or four
pipelined cycles.

The floating-point instruction set supports two
computation models, scalar and pipelined. In scalar
mode new floating-point instructions do not start proc-
essing until the previous floating-point instruction
completes. This mode is used when a data dependency
exists between the operations or when a compiler ig-
nores pipeline scheduling. In the scalar-mode example
of Figure 6 each iteration of the Do loop requires the
results from the previous iteration and 6-cycle execu-
tion.

In pipelined mode the same operation can produce a
result every clock cycle, and the CPU pipeline stages
are exposed to software. The software issues a new
floating-point operation to the first stage of the pipeline
and gets back the result of the last stage of the pipeline.
Destination registers are not specified when the opera-
tion begins, rather when the result is available. This
explicit pipelining avoids tying up valuable floating-
point registers for results, so the registers can still be
used in the pipeline. Implicit pipelining, using score-
boarding, would cause the registers to become the
bottleneck in the floating-point unit.

Pipelining also takes place in a dual-operation mode
in which an add and a multiply process in parallel.
Figure 7 shows the adder unit, the multiplier unit, the
special registers, and the dual-operation data paths.
Dual-operation instructions require six operands. The
register file provides three of the operands, and the
special registers and the interunit bypasses provide the
remaining three. The instruction encodings specify the
source and destination paths for the units.

Referring back to the pipeline-mode example of
Figure 6 , note that we show the dual-operation instruc-
tion M12TPM SRCl, SRC2, RDEST as M12TPM A[i],
B[i], X[-61. (The M12TPM mnemonic is a variation of
the PFAN instruction.) This instruction specifies that
the multiply is initiated with SRCl and SRC2 as the
operands. It also specifies that the add is initiated with
the result from the multiply and the T register as the
operands, and RDEST stores the result from the add.
Because of the three stages of the add and multiply
pipelines, the available result comes from the operation
that started six clock cycles previously.

There are 32 variations of dual-operation instruc-
tions. Applications such as fast Fourier transforms,
graphics transforms, and matrix operations can be
implemented efficiently with these instructions. Some
apparently scalar operations, such as adding a series of
numbers, can also take advantage of the pipelining
capability.

OP

d.FP-OP

d.FP-OP or CORE-OP

d.FP-OP

FP-OP

FP-OP

63

I OP I

d.FP-OP

FP-OP

OP

31 0

L CORE-Of‘

OP

FP-OP

OP

I OP I

f

.c
+

Enter dual-
instruction mode.
Initiate exit from dual-
instruction mode.

Leave dual-
instruction mode.

I
Temporary dual-
instruction mode

Figure 8. Dual-instruction-mode transitions.

The is60 microprocessor can provide its fast float-
ing-point hardware with the necessary data bandwidth
to achieve peak performance for the inner loops of
common routines. The dual-instruction mode allows
the processor to perform up to 128-bit data loads and
stores at the same time it executes a multiply and an
add. Figure 8 shows the dual-instruction-mode transi-
tions for an extended sequence of instruction pairs and
for a single instruction pair. Programs specify dual-
instruction mode in two ways. They can either include
in the mnemonic of a floating-point instruction a “d.”
prefix or use the assembler directives .dual. . . enddual.
Either of these methods causes the dual or D-bit of the
floating-point instruction to be set. If the processor
while executing in single-instruction mode encounters
a floating-point instruction with the D-bit set, it exe-
cutes one more 32-bit instruction before beginning
dual-instruction execution. In dual-instruction mode, a
floating-point instruction could encounter a clear D-
bit. The processor would then execute one more in-
struction pair before returning to single-instruction
mode.

The floating-point hardware also performs integer
multiplies and long integer adds or subtracts. Integer
multiplies by constants can be performed in the RISC
core using shift instructions. To perform a full integer
multiply, the processor transfers two integer registers
by using IXFR instructions. The FMLOW instruction
performs the actual multiplication, and the FXFR in-
struction transfers the results back to the core. The total
operation takes from four to nine clock cycles, depend-
ing on what other instructions can be overlapped.

August 1989 23

Intel 860

Graphics
The floating-point hardware of the CPU efficiently

performs the transformation calculations and advanced
lighting calculations required for 3D graphics. The
processor performs 500K transforms/second for 3 x 4
3D matrices, including the trivial reject clipping and
perspective calculations. A 3D image display requires
the use of integer operations for shading and hidden-
surface removal. The graphics unit hardware speeds
these back-end rendering operations and operates di-
rectly into screen buffer memory. It uses the floating-
point registers and operates in parallel with the core.

Graphics instructions take advantage of the 64-bit
data paths and can operate on multiple pixels simulta-
neously, realizing I O times the speed of the RISC
core when performing shading. Instructions support
8-, 16-, and 24/32-bit pixels, operating respectively
on eight, four, or two pixels simultaneously.

In 3D graphics, polygons generally represent the set
of points on the surface of a solid object. During
transformation, the graphics u n i t calculates only the
vertices of the polygons. The unit knows the locations
and color intensities of the vertices of the polygons. but
points between these vertices must be calculated. These
points, along with their associated data, are called
pixels. If a figure is displayed with only the vertices and
simple lines, it appears as a wireframe drawing. The
simplest wireframe drawing typically shows all verti-
ces, even the ones that should be hidden from view by
an overlapping polygon. To show shaded 3D images,
the graphics unit must display the surface of the poly-
gons. Where polygons overlap, i t must display the
polygon closest to the viewer.

In graphics calculations the z value represents the
distance of a pixel from the viewer. Although the depth
of each polygon’s vertices is known, to overlay poly-
gons not on a vertex, the graphics unit must interpolate
the depths from the bordering vertices. This step is
called z interpolation. In this step the depths of all
points of a polygon can be determined. For overlapping
points, the z values of different polygons can be checked
and only the pixel data of the polygon closest to the
viewer displayed.

To perform the procedure just described, the graph-
ics instructions include intensity interpolation, z inter-
polation, and z-buffer checks. Intensity interpolation
allows smooth linear changes in pixel intensity and
color between vertices. This capability provides a
smoother appearance than does the flat shading of the
polygons. The more data bits per pixel, the smoother
the interpolation becomes. The i860 CPU graphics
instructions support both Gouraud and higher order
shading techniques. Gouraud shading interpolates in-
tensities along the scan lines. Figure 9 illustrates pixel
interpolation for Gouraud shading of a triangle. The
intensity level across the scan line shown is interpo-
lated from 30 to 27.

Red color 20 (r, g, b, x , Y. z)
(0-255)

Figure 9. Pixel interpolation for Gouraud shading of a
triangle for red colors and 0-255 intensity levels.

In graphics the :-buffer, which can reside in normal
dynamic RAM, stores the depth of the pixel buffer
currently being displayed. Instructions for ;-buffer
interpolation calculate the z values between vertices. Z-
buffer check instructions compare the new pixels’ z
values to the values in the ,--buffer, and if closer, the
pixels are unmasked in the pixel mask register. The
RISC core operates in parallel with the graphics unit
and executes a pixel store instruction. The pixel store
updates the pixels that are unmasked in the mask regis-
ter. If a pixel is updated, the new : value needs to be
stored to the :-buffer. The z-buffer check instruction
updates the buffer with the minimum : value for each
pixel.

Most workstations typically have a base graphics
system of a simple frame buffer with simple display
hardware. With a frame-buffer graphics system, the
i860 CPU can perform Gouraud-shading operations on
50,000 triangles per second at 40 MHz. This level of
performance exceeds that of workstations that include
costly dedicated graphics processor boards.

Caches
The i860 CPU has a4-Kbyte instruction cache and an

8-Kbyte data cache, each with its own address and data
paths to support concurrent accesses. The data cache
supports up to 128-bit accesses on each clock cycle, and
the instruction cache supports up to 64-bit accesses.
The aggregate bandwidth at 40 MHz is 960 Mbytes/
second. Both caches combine two-way set-associative
parallelism with a 32-byte line size. Additionally, the
data cache uses write-back caching.

24 IEEEMICRO

Both caches use virtual addresses to avoid a critical
path in the cache access. Data cache accesses use the
TLB lookup for enforcing the page-based protection.
Since both caches use virtual tags, software must avoid
the aliasing of data. Within a context, each physical
address must only be accessed with one virtual address.
During context switches, the instruction cache must be
invalidated and the data cache flushed. The caches,
although large enough to give hit rates above 90 percent
within many applications, are too small to provide hits
across context changes. Therefore, we did not feel
process IDS or a duplicate set of physical tags to avoid
flushing the cache between context switches were
warranted.

Flushing the data cache is an easy way to avoid
aliasing, and a simple calculation shows what little
impact a small cache has on performance flushing. A
typical i860 CPU context switch, including the data
cache flush, takes approximately 65 microseconds. In
the worst case, a workstation will change context 200
times per second; multiplying (65 * seconds * 200
times/second) equals a 1.3 percent performance degra-
dation due to context switching.

Write-back data caching avoids propagating all
writes to the external bus, which reduces bus traffic. It
also prevents a bottleneck in vector operations where
write traffic from the vector result collides with an
incoming vector operand. With write-back caching, the
hardware necessary to implement transparent caching
for multiprocessor systems moved costs beyond the
silicon budget of this implementation. Instead, we use
software to manage cache coherency. Each processor
can cache code, vector register data, and private stack
data, while shared data remains uncached. Software
controls the caching by using a cachable bit in the page
table entries to prevent shared data from being cached.
External hardware can also assert a cachable enable pin
to control cachability of each line’s read miss. The
flush instruction forces all “dirty” blocks in the data
cache back to memory. Flushing is needed before
removing a page or changing to a new virtual address
space.

We included optimizations for cache-miss process-
ing. Each cachable read miss results in four bus cycles
to fill the 32-byte cache line. First, the processor fetches
the referenced data word and performs a wraparound
fill to read the entire line. The processor can then
continue execution when the first word is returned. The
processor contains two 128-bit write buffers used for
store misses and cache miss processing. When the
processor issues a store instruction that misses the
cache, it can continue execution while the write buffer
carries out the actual memory write. The write buffers
support two store misses and also support a delayed
write back of the dirty cache line. If a cachable read
miss displaces a dirty cache line, three operations take
place. The processor writes the dirty line to the write
buffer, the cache line read takes place on the external

bus, and then the write back occurs.
A convenient software model for managing the data

cache for vector computations on large matrices is to
the treat the data cache as a “vector register set.”
Vectors, or their intermediate results, that are being
reused are kept in the onboard cache by referencing
with the normal floating-point load instruction. The
vectorization process analyzes nested loops to deter-
mine which vectors are reusable in the second-loop
level. Vector register references in the vector library
routines use the normal floating-point load instruction.
Vector memory references use the pipelined floating
load instruction to stream the data from memory di-
rectly into the registers and not disturb the cache. Using
the data cache as a vector register set is a more flexible
concept than that found in many supercomputers with
small, fixed-length vector registers. This concept of-
fers the advantages of a vector register set for vector
computations while retaining the flexibility of a data
cache for scalar computations.

Bus interface
Designed for scalability to 50 MHz, the i860 CPU

external bus performs a 64-bit transfer every two clock
cycles. Thus, we achieve the design of a practical TTL
(transistor-transistor logic) system, even at 50 MHz.
The bus can interface either to a second-level cache or
directly to a DRAM system. The bus allows optional
pipelining for increasing the access time without de-
creasing the bandwidth. The full bus bandwidth can be
realized from one bank of DRAMS, however, the la-
tency will be greater than if a fast static RAM cache is
used.

With the two-cycle transfer rate, the external bus can
supply one memory operand for every double-
precision add/multiply pair, or two contiguous single-
precision operands for every two single-precision add/
multiply pairs. The other two vector operands for an
add/multiply pair must come from the onboard data
cache. This approach provides the same ratio of
floating-point rate to external memory bandwidth as
the Cray 1. To avoid bus bottlenecks, the vectorization
process must try to reuse two of the three vector oper-
ands in the second-level inner loop.

The i860 microprocessor contains a synchronous
interface with a demultiplexed address and 64-bit-wide
data bus. The address bus provides 32-bit addressing,
consisting of 29 address lines and separate byte enable
signals for each eight data bits. The bidirectional data
bus can accept or drive new data on every other clock
cycle, yielding a bandwidth of 160 Mbytes per second
at 40 MHz.

The bus optionally allows for two levels of bus
pipelining selected on a bus cycle-by-cycle basis. When
pipelining, a new cycle starts prior to the completion of
the outstanding cycles. Two levels of pipelining allow

August 1989 25

Intel 860

Table 2.
Processor-pin summary.

~~

Pin name Function Active Input/
state output

Execution control pins
CLK Clock
RESET System reset
HOLD Bus hold
HOLDA Bus hold acknowledge
BREQ Bus request
INT/CS8 Interrupt, code size
Bus interface pins
A31-A3 Address bus
BE7#-BEO# Byte enable
D63-DO Data bus
LOCK# Bus lock
W/R# Writehead bus cycle
NENE# Next near
NA# Next address request
READY# Transfer acknowledge
ADS# Address status

I
High I
High I
High 0
High 0
High I

-

High 0
Low 0
High I/O
Low 0
High/Low 0
Low 0
Low I
Low I
Low 0

Cache interface pins
KEN# Cache enable Low I
PTB Page table bit High 0
Testability pins
SHI Boundary scan shift High I

BSCN Boundary scan enable High I
SCAN Shift scan path High I
Intel-reserved configuration pins
CC1-CCO Configuration High I
Power and ground pins

input

System power - -
System ground - -

vcc
vss

A # symbol after a pin name indicates that the signal is active
when at the low-voltage level.

three cycles to operate at one time. Fast TTL latches can
be used on the address and data bus. This method
isolates the memory array from the processor pin tim-
ings, allowing easy scalability and providing the maxi-
‘mum time for memory accesses. With pipelining, the
maximum data rate of the bus can be sustained even if
the access time is six clock cycles. We achieve over 100
nanoseconds of address-to-data access time for a full
bandwidth system at 40 MHz.

A summary of the processor pins appears in Table 2.
We timed the processor with a single-frequency, TTL-
level clock. An optional mode for executing out of one

8-bit-wide EPROM can be entered at reset by activating
the INT/CS8 pin. In this mode the processor fetches
instructions from the EPROM with the byte-enable
signals BE2#-BEO# redefined as address lines A2-AO.

The HOLD, HOLDA, and BREQ signals activate
arbitration of the processor’s local bus. When a DMA
controller, or another processor, needs access to the
local bus of the CPU, it asserts HOLD. When the CPU
completes all of its outstanding bus cycles, it floats the
bus interface pins and returns HOLDA active high. The
CPU will remain in this state with HOLDA active until
HOLD is deasserted. The CPU can continue processing
while in HOLD until the external bus is required. At
this time it asserts the BREQ output signal. Arbitration
logic samples the BREQ signal to arbitrate a shared
bus.

The A3 1 -A3 and BE7#-BEO# bus interface pins can
access up to 4 gigabytes of address space. The address
lines select the 8-byte word, and the byte-enable signals
select the byte within the word. For read accesses to
cachable memory, the processor caches the entire data
bus so the byte-enable signals are ignored. For write
operations the byte-enable signals determine which
bytes in memory must be updated. The i860 micropro-
cessor does not, however, allow misaligned accesses.
Data of 32 and 16 bits must be placed on 4- and 2-byte
boundaries, respectively. However, single-byte data
can be placed at any byte location. The 64 bidirectional
data pins can transfer 8-, 16-, 32-, or 64-bit quantities;
pins D7-DO signify the least significant byte and D63-
D56 signify the most significant byte.

The processor asserts the ADS# output during the
first clock cycle of each bus cycle to indicate the start
of the bus cycle. The W/R# signal distinguishes the
write and read bus cycles. The NENE# output indicates
to the DRAM controller that the current address is in the
same DRAM page as the previous cycle. As shown
later, this information is useful for designing high-
performance memory systems.

The NA# input to the CPU controls pipelining and
can be asserted before the current cycle ends. When the
processor samples NA# active, it can start driving the
next bus cycle’s address and definition. This can be
done two times prior to returning data for any of the
cycles.

While NA# controls the address and bus cycle defi-
nition signals, READY# controls the data operations.
When READY# is sampled as active for a read, the
processor latches the data from the data bus. When
READY# is sampled as active for a write, the processor
stops driving the data from that cycle. READY# also
serves to end a bus cycle. The LOCK# signal output
provides atomic (indivisible) sequences. Using LOCK#
prevents the processor from relinquishing the bus even
if HOLD is asserted. For multiprocessor systems, the
external hardware only needs to lock the first address in
a locked sequence.

This processor samples the KEN# input to determine

26 IEEEMICRO

i860 CPU DRAM read cycle

CLK 1
I I I I I I w ; I I I

I I I ADS#
I I I I I I I I I
I I I I I I I I I

I I I I I I I

NENE# I I I I I I1 I I
I I I I I I I I I
I I I I I I I I I
I I I I I I I

W/R# I \ I I I I I I : I I
I I I I I I I I I
I I I I I I I I I
I I I I I I I I I
I

CPUaddress 1 < ' AddressX' > @ 1 I I I I

I I I I I I I I I
I I I I I I I I I
I I I I I I I I I
I I I
I I I I
I I I I

NA#
I I I I I I I I I
I I I I

I I I I I I I I I
Data (i860) I I I ;(Data>; 1 @ ; a; I

I I I I I I I I I
I I I I I I I I I
I I I

I I I
I I I I I I I I I

READY#
I I I I I I I I I
I I I

COlX
I 8 I I

DRAM address I I I
I I I I I I I I I

<Row X x x Col x + lXC0l x + 2 X C o l x + 3x

I I I I I I I I I
I I I I I I I I

RAS# I I I I I I I I
I I I I I I I I I
I I I I I I I I I

I I I I I I
8 I I I I

I I I I I I I I I

CAS#

I I I I
I I I DRAM data I

Figure 10. The CPU performs four read cycles to fill a cache line.

if the data for the current read cycle is cachable. Ad-
dress space that is used for input and output can be
decoded to deassert KEN# during I/O accesses. Soft-
ware can also mark areas of memory as noncachable on
a page-by-page basis. If the software has not disabled
caching of the page, and KEN# is available for a read
cycle, three additional 64-bit bus cycles will be gener-
ated to fill the 32-byte cache block.

Interfacing to a DRAM
system

Figure 10 shows the processor performing four read
cycles as it would do to fill a cache line. Also shown in
the figure is the NA# signal returned to the processor,
which indicates that the system can accept the next bus

cycle. Two NA#s are returned before any of the cycles
are completed. To complete a read cycle, the memory
system provides the data on the bus and returns
READY# to the processor. Once fully pipelined, the
memory system provides data and READY# on every
other clock cycle. Important for high performance, this
data rate can be provided by ordinary static column
DRAMS. The processor also provides the control signal
NENE# to optimize DRAM control.

The memory system in Figure 1 1 on the next page
consists of an address buffer; an address latch; eight
latching data buffers; and a 64-bit-wide, static column-
mode DRAM (256K x 4). This arrangement allows the
memory size to be increased in increments of two
megabytes. Using 256 x 4-memories also has advan-
tages in reducing power and signal-drive requirements.
To support the two levels of pipelining, the processor
latches both address and data. The address latches hold

August 1989 27

Intel 860

Multiplexed DRAM address bus

Row address
buffer -

0[0:63]

A[3:3,1 Address bus +
b

t
64-bit data bus

DRAM
control logic

A

ADS# ~ CAE#
W/R# CAL
NENE# ~ RAL

~ RAE#
NA# CPAB
READY# CLK ~ CPBA

b

*
c

i860
CPU

~ OE#
~ DIR

BE[O:7] OE#

Row
address

'9 bits

Buffer control

c 74F827

' & A
'8

-G

IF 256K X 4

I$- 256K X 4 - B

Column
address latch

Column
address

RAS
CAS
WE#(8)

b

Decode

DRAM control

4 DRAMSEL# I I
I>- 256K X 4

256K X 4 I PA

I I - 4 -
[M A B l 256KX4

I ' 8 I

Figure 11. A DRAM system for the i860 microprocessor requires little "glue logic."

the address of the previous cycle, while the data from
the cycle prior to that is held in the data buffers. Using
TTL components on the address and data paths also has
the advantage of isolating the memory system from the
processor's pin timings.

The two address latches are used for multiplexing the
row and column addresses from the processor to the
DRAMS' address lines. When accesses occur within
the DRAM page, only the column address needs to be

supplied to the memory address lines. Most systems
that use a fast-access DRAM mode need an additional
hardware comparator. The i860 CPU has a compara-
tor-which supplies the NENE# signal on each bus
cycle-built into the bus unit. The controller uses this
signal to determine if a fast static column-mode access
can occur or if a full DRAM cycle needs to take place.

The bidirectional data buffers latch the data for both
reads and writes. For reads, the buffers latch data and

28 IEEEMICRO

return READY# on the following clock cycle. With the
two levels of pipelining the total access time is six
cycles, while data is available every two cycles. Zero-
wait-state operation does not require pipelining for
write cycles. When a write occurs, the address and data
latched in the buffers allow READY# to be returned to
the processor. The actual write cycle occurs after
READY# returns to the processor. This delayed write
operation allows processor execution to continue even
though the write has not fully completed.

Using 85-11s static column-mode DRAMS, the 33-
MHz i860 microprocessor can operate at zero wait
states for access within the DRAM page. The two-level
pipelining and two-clock transfer rate allow the proces-
sor to sustain performance without the need for an
external cache memory system.

Vectorizer

Software support

Fortran
compiler

Both internal development teams and independent
vendors provide a full complement of software devel-
opment tools and operating systems for the i860. Figure
12 shows the software development tools available: C

and Fortran compilers, assembler/linker, simulator/
debugger, Fortran vectorizer, plus mathematical, vec-
tor primitive, and 3D graphics libraries. To support the
initial development environments, both Unix System V
run on a 386 microprocessor and OS/2 host cross-
compilers. The optimizations used in the compilers
include coloring for register allocation, register-based
parameter passing for calls, interblock common subex-
pression and loop invariant elimination, constant
propagation, strength reduction, extensive peephole
optimizations, and instruction scheduling.

Scientific-application support includes a Fortran
vectorizing precompiler. Vectorization occurs in Do
and If loops, outer loops, and forward-branching condi-
tional operations. The precompiler recognizes these
structures and generates calls to a set of preprogrammed
procedures. The preprogrammed procedures are opti-
mized for the processor’s instruction set and for manag-
ing the data cache as a vector register. Additionally,
other high-level languages can call these procedures.
We plan to further increase the degree of parallelism
that high-level languages can use in the processor. We
also provide a library of assembly-language routines
for scalar mathematics.

C
compiler

ASM source 9 I
I Assembler Linker

Vector
primitive library processor

Math library

Figure 12. Software development environment supporting the i860.

August 1989 29

Intel i860

The first 3D visualization tool ported to the iX60
CPU is Ardent Computer's Dore. This tool supports
both real-time. interactive 3D modeling and higher
quality static images. Several windouing environments
and other 3D tools and libraries are also being ported.

Application software can be run on either a softuare
simulator or an add-in application accelerator. Both
share a common debugging interface. The simulator
allows the user to model different memory systems and
measure their effects on performance. A Unix V/386 o r
OS/2 hosts the application accelerator. which includes
a runtime operating environment that maps I/O re-
quests back to the host processor.

A multiprocessing version of Unix System V Release
4.0 is under development for the i860 CPU. This is a
joint effort by AT&T, Convergent Technologies, Intel,
Olivetti, Prime Computer, and others. We plan to main-
tain source-code compatibility with the high-level lan-
guages between the 386, i486, and i860 microproces-
sors. Specifications for an applications binary inter-
face standard (ABI) will allow portability of
application software across multiple vendors' system
implementations.

Les Kohn is a chief architect for high-performance proces-
sors at Intel Corporation of Santa Clara. California, where he
has worked on various 32- and 64-bit microprocessor design
projects. Before joining the company, he worked as a soft-
ware manager and architect for the NS32000 family at Na-
tional Semiconductor. His interests include computer archi-
tectures and compilers and electronic synthesizers.

Kohn received his BS degree in physics from the California
Institute of Technology in Pasadena.

he i860 microprocessor begins the second genera-
tion of 32-bit RISC processors. By using a 64-bit T architecture. the i860 delivers balanced MIPS,

Mflops. and graphics performance. The million-tran-
sistor budget lets us integrate the RISC core and pro-
vide dedicated, fast floating-point hardware, graphics
capabilities, and cache memories on one chip. The
design allows maximum parallelism between the func-
tional units while achieving a balance between compu-
tation speed and data bandwidth. Mainframe and super-
computer architectural concepts let the processor offer
a complete solution :%the requirements of high-compu-
tation applications.&

References
I . ANSI!IEEE Sriirldur.d 754-/985 for- Biriur-y Flourin<q-

P oirrt Ar-ithmetic.. IEEE Computer Society Press, Los
Alamitos. Calif., 19x5.

Neal Margulis is a senior engineer for high-performance
processors at Intel. His interests include processor architec-
ture and system design. Margulls received his degree in
electrical engineering from the University of Vermont in
Burlington. He is a member of the IEEE Computer Society
and Tau Beta Pi.

Questions concerning this article may be directed to the
authors through Michael Sullivan at Intel Corporation, SC4-
42, 2625 Walsh Avenue, Santa Clara, CA 9505 1 .

Reader Interest Survey

Indicate your interest in this article by circling the appropriate number on the Reader Service Card.

Low 150 Medium 151 High 152

30 IEEEMICRO

