
10

Intel’s Itanium 2 processor series has
regularly delivered additional performance
through the increased frequency and cache as
evidenced by the 6-Mbyte and 9-Mbyte ver-
sions.1 Montecito is the next offering in the
Itanium processor family and represents many
firsts for both Intel and the computing indus-
try. Its 1.7 billion transistors extend the Itani-
um 2 core with an enhanced form of temporal
multithreading and a substantially improved
cache hierarchy. In addition to these land-
marks, designers have incorporated technolo-
gies and enhancements that target reliability
and manageability, power efficiency, and per-
formance through the exploitation of both
instruction- and thread-level parallelism. The
result is a single 21.5-mm ¥ 27.7-mm die2 that
can execute four independent contexts on two
cores with nearly 27 Mbytes of cache, at over
1.8 GHz, yet consumes only 100W of power.

Beyond Itanium 2
Figure 1 is a block diagram of the Itanium

2 processor.3 The front end—with two levels
of branch prediction, two translation look-
aside buffers (TLBs) and a zero-cycle branch
predictor—feeds two bundles (three instruc-
tions each) into the instruction buffer every

cycle. This eight-entry queue decouples the
front end from the back and delivers up to
two bundles of any alignment to the remain-
ing six pipeline stages. The dispersal logic
determines issue groups and allocates up to
six instructions to nearly every combination
of the 11 available functional units (two inte-
ger, four memory, two floating point, and
three branch). The renaming logic maps vir-
tual registers specified by the instruction into
physical registers, which access the actual reg-
ister file (12 integer and eight floating-point
read ports) in the next stage. Instructions then
perform their operation or issue requests to
the cache hierarchy. The full bypass network
allows nearly immediate access to previous
instruction results while the retirement logic
writes final results into the register files (10
integer and 10 floating-point write ports).

Figure 2 is a block diagram of Montecito,
which aims to preserve application and oper-
ating system investments while providing
greater opportunity for code generators to
continue their steady performance push. This
opportunity is important, because even three
years after the Itanium 2’s debut, compilers
continue to be a source of significant perfor-
mance improvement. Unfortunately, compiler-

Cameron McNairy
Rohit Bhatia

Intel

INTEL’S MONTECITO IS THE FIRST ITANIUM PROCESSOR TO FEATURE

DUPLICATE, DUAL-THREAD CORES AND CACHE HIERARCHIES ON A SINGLE DIE.

IT FEATURES A LANDMARK 1.72 BILLION TRANSISTORS AND SERVER-FOCUSED

TECHNOLOGIES, AND IT REQUIRES ONLY 100 WATTS OF POWER.

MONTECITO: A DUAL-CORE,
DUAL-THREAD ITANIUM

PROCESSOR

Published by the IEEE Computer Society 0272-1732/05/$20.00 ”2005 IEEE

optimization compatibility—which lets proces-
sors run each other’s code optimally—limits
the freedom to explore aggressive ways of
increasing cycle-for-cycle performance and
overall frequency.

Single-thread performance improvements
Internal evaluations of Itanium 2 code indi-

cate that static instructions per cycle (IPC)
hover around three and often reach six for a
wide array of workloads. Dynamic IPC
decreases from the static highs for nearly all
workloads. The IPC reduction is primarily due
to inefficient cache-hierarchy accesses, and to
a small degree, functional unit asymmetries
and inefficiencies in branching and specula-
tion. Montecito targeted these performance
weaknesses, optimizing nearly every core block
and piece of control logic to improve some per-
formance aspect.

Asymmetry, branching, and speculation
To address the port-asymmetry problem,

Montecito adds a second integer shifter yielding
a performance improvement of nearly 100 per-
cent for important cryptographic codes. To
address branching inefficiency, Montecito’s
front end removes the bottlenecks surrounding
single-cycle branches, which are prevalent in
integer and enterprise workloads. Finally, Mon-
tecito decreases the time to reach recovery code
when control or data speculation fails, thereby
lowering the cost of speculation and enabling
the code to use speculation more effectively.4

Cache hierarchy
Montecito supports three levels of on-chip

cache. Each core contains a complete cache hier-
archy, with nearly 13.3 Mbytes per core, for a
total of nearly 27 Mbytes of processor cache.

Level 1 caches. The L1 caches (L1I and L1D)
are four-way, set associative, and each holds
16 Kbytes of instructions or data. Like the rest
of the pipeline, these caches are in order, but
they are also nonblocking, which enables high
request concurrency. Access to L1I and L1D
is through prevalidated tags and occurs in a
single cycle. L1D is write-through, dual-
ported and banked to support two integer
loads and two stores each cycle. The L1I has
dual-ported tags and a single data port to sup-
port simultaneous demand and prefetch

accesses. The performance levels of Mon-
tecito’s L1D and L1I caches are similar to
those in the Itanium 2, but Montecito’s L1I
and L1D have additional data protection.

Level 2 caches. The real differences from the
Itanium 2’s cache hierarchies start at the L2
caches. The Itanium 2’s L2 shares data and
instructions, while the Montecito has dedi-
cated instruction (L2I) and data (L2D)
caches. This separation of instruction and data
caches makes it possible to have dedicated
access paths to the caches and thus eliminates
contention and capacity pressures at the L2
caches. For enterprise applications, Mon-
tecito’s dedicated L2 caches can offer up to a
7-percent performance increase.

The L2I holds 1 Mbyte; is eight-way, set asso-
ciative; and has a 128-byte line size—yet has

11MARCH–APRIL 2005

B B B I I M M M M F F

L1
cache (16 KB)

Branch
prediction

Integer
registers

Integer
unit

Memory/
Integer

Floating-
point unit

Register stack engine/Rename

Instruction
TLB

L1D
cache (16 KB)

Queues/
Control

L3
cache (3 MB)

L2
cache (256 KB)

Data
TLB

Branch and
predicate
registers

Branch unit

Floating-
point

registers

ALAT

System interface

Figure 1. Block diagram of Intel’s Itanium 2 processor. B, I,
M, and F: branch, integer, memory, and floating-point func-
tional units; ALAT: advanced load address table; TLB: trans-
lation look-aside buffer.

the same seven-cycle instruction-access latency
as the smaller Itanium 2 unified cache. The tag
and data arrays are single ported, but the con-
trol logic supports out-of-order and pipelined
accesses, which enable a high utilization rate.

Montecito’s L2D has the same structure
and organization as the Itanium 2’s shared
256-Kbyte L2 cache but with several micro-
architectural improvements to increase
throughput. The L2D hit latency remains at
five cycles for integer and six cycles for float-
ing-point accesses. The tag array is true four-
ported—four fully independent accesses in
the same cycle—and the data array is pseudo-
four-ported with 16-byte banks.

Montecito optimizes several aspects of the
L2D. In the Itanium 2, any accesses to the
same cache line beyond the first access that
misses L2 will access the L2 tags periodically
until the tags detect a hit. The repeated tag
queries consume bandwidth from the core

and increase the L2 miss latency. Montecito
suspends such secondary misses until the L2D
fill occurs. At that point, the fill immediately
satisfies the suspended request. This approach
greatly reduces bandwidth contention and
final latency. The L2D, like the Itanium 2’s
L2, is out of order, pipelined, and tracks 32
requests (L2D hits or L2D misses not yet
passed to the L3 cache) in addition to 16 miss-
es and their associated victims. The difference
is that Montecito allocates the 32 queue
entries more efficiently, which provides a high-
er concurrency level than with the Itanium 2.

Level 3 cache. Montecito’s L3 cache remains
unified as in previous Itanium processors, but
is now 12 Mbytes. Even so, it maintains the
same 14-cycle integer-access latency typical of
the L3s in the 6- and 9-Mbyte Itanium 2 fam-
ily. Montecito’s L3 uses an asynchronous
interface with the data array to achieve this

12

HOT CHIPS 16

IEEE MICRO

B B B I I M M M M F F B B

L1
cache (16 KB)

Branch
prediction

Integer
registers

Integer
unit

Memory/
Integer

Floating-
point unit

Register stack engine/Rename

Instruction
TLB

L1D
cache (16 KB)

L2D
cache (256 KB)

L2I
cache (1 MB)

Queues/
Control

L3
cache (12 MB)

Data
TLB

Branch and
predicate
registers

Branch unit

Floating-
point

registers

ALAT

Synchronizer

B I I M M M M F F

L1
cache (16 KB)

Branch
prediction

Integer
registers

Integer
unit

Memory/
Integer

Floating-
point unit

Register stack engine/Rename

Instruction
TLB

L1D
cache (16 KB)

L2D
cache (256 KB)

L2I
cache (1 MB)

Queues/
Control

L3
cache (12 MB)

Data
TLB

Branch and
predicate
registers

Branch unit

Floating-
point

registers

ALAT

Synchronizer

F
ox

to
n

te
ch

no
lo

gy
S

ys
te

m
 in

te
rf

ac
e

A
rb

ite
r

Figure 2. Block diagram of Intel’s Montecito. The dual cores and threads realize performance unattainable in the Itanium 2
processor. Montecito also addresses Itanium 2 port asymmetries and inefficiencies in branching, speculation, and cache
hierarchy.

low latency; there is no clock, only a read or
write valid indication.5 The read signal is coin-
cident with index and way values that initiate
L3 data-array accesses. Four cycles later, the
entire 128-byte line is available and latched.
The array then delivers this data in four cycles
to either the L2D or L2I in critical-byte order.
The asynchronous design not only helps lower
access time, but also significantly reduces
power over the previous synchronous designs.

Montecito’s L3 receives requests from both
the L2I and L2D but gives priority to the L2I
request in the rare case of a conflict. Conflicts
are rare because Montecito moves the arbi-
tration point from the Itanium 2’s L1-L2 to
L2-L3, which greatly reduces conflicts because
of L2I and L2D’s high hit rates.

Dual threads
Itanium 2 processors have led the industry

in all three categories of performance: integer,
floating-point, and throughput computing.
However, the gap between processor speed
and memory-system speed continues to
increase with each semiconductor generation,
and the additional memory latency typical of
large systems only exacerbates the problem.
For many integer and floating-point applica-
tions, instruction and data prefetching in
combination with Montecito’s fast and large
cache hierarchy effectively bridge the
processor-memory chasm. However, com-
mercial transaction-processing codes, charac-
terized by large memory footprints, realize
only limited benefits from these techniques.

In fact, although the L2I reduces instruction
stream stalls, it increases the data stall com-
ponent as a percentage of execution time.6

As Figure 3 shows, Montecito addresses the
problem of ever-growing memory latency by
offering two hardware-managed threads that
reduce stall time and provide additional per-
formance. The dual-thread implementation
duplicates all architectural state and some
microarchitectural state to create two logical
processors that share all the parallel execution
resources and the memory hierarchy. Resource
sharing is a blend of temporal multithreading
(TMT) for the core and simultaneous multi-
threading (SMT) for the memory hierarchy.

The cache hierarchy simultaneously shares
resources, such as queue entries and cache
lines, across the two threads, which gives each
thread equal access to the resources. Mon-
tecito’s designers chose not to pursue an SMT
approach at the core level for several reasons.
The most important is that internal studies
show an average three and a maximum six IPC
for integer and enterprise workloads, and an
average five IPC for technical workloads before
cache misses cause a degradation. Thus, the
core utilization level is not the problem; rather
it is decreasing the impact of memory access-
es on IPC. Given the underlying in-order exe-
cution pipeline, the small potential return for
supporting SMT at the core would not justi-
fy its cost. The improvements in the cache
hierarchy, though intended to benefit
instruction-level parallelism, accommodate the
increased demand that dual threads create.

13MARCH–APRIL 2005

Hidden latency

Ai Idle Ai+1 Idle Ai+2

Ai Ai+1 Ai+2

Bi Idle Bi+1 Idle Bi+2

Bi Bi+1 Bi+2

Time

Figure 3. How two threads share a core. Control logic monitors the workload’s behavior and dynamically adjusts the time
quantum for a thread. If the control logic determines that a thread is not making progress, it suspends that thread and gives
execution resources to the other thread. This partially offsets the cost of long latency operations, such as memory accesses.
The time to execute a thread switch—white rectangles at the side of each box—consumes a portion of the idle time.

Other shared structures, such as branch-
prediction structures and the advance load
address table (ALAT), require special consid-
eration to support the two threads. The
branch-prediction structures use thread tag-
ging so that one thread’s predictions do not
taint the other’s prediction history. Each
thread contains a complete set of return stack
structures as well as an ALAT, since simple
tagging would not be sufficient for these key
performance structures.

Duplicating the complete architectural state
represents the most significant change to the
core and requires a core area (excluding the
L3 cache) less than 2 percent larger than that
for a single-thread implementation. Moreover,
this growth, though mainly in the already
large register files, does not affect the register
file and bypass network’s critical paths because
Montecito includes a memory cell in which
two storage cells share bit lines.7

Thread switch control
In-order core execution, coupled with the

exclusive-resource-ownership attribute of tem-
poral multithreading, lets Montecito incor-
porate two threads without affecting legacy
software optimizations and with minimal
changes to pipeline control logic. The com-
petitively shared resources of the memory sub-
system (caches and TLBs) required additional
effort to ensure correctness and to provide spe-
cial optimizations that avoid negative thread
interactions. Part of this additional effort cen-
tered on thread-switch control.

The control logic for thread switching
leverages the existing pipeline-flush mecha-
nism to transfer control from one thread to
the other. A thread switch is asynchronous to
the core pipeline and is attached to the issue
group of instructions in the exception-
detection (DET) pipeline stage.3 The switch
becomes the highest priority event and caus-
es a pipeline flush without allowing the issue
group to raise faults or commit results. The
thread-switch control logic asserts this
pipeline flush for seven cycles for a total
switch penalty of 15 cycles—seven more than
the typical eight-cycle pipeline flush.

Five events can lead to a thread switch,
many of which affect a thread’s urgency—an
indication of its ability to use core resources
effectively:

• L3 cache miss/data return. L3 misses and
data returns can trigger thread switches,
subject to thread urgency comparison
(described later). An L3 miss in the fore-
ground thread is likely to cause that
thread to stall and hence initiate a switch.
Similarly, a data return to the L3 for the
background thread is likely to resolve
data dependences and is an early indica-
tion of execution readiness.

• Timeout. Thread-quantum counters
ensure fairness in a thread’s access to the
pipeline execution resources. If the thread
quantum expires when the thread was
effectively using the core, thread-switch
control logic switches it to the back-
ground and sets its urgency to a high
value to indicate its execution readiness.

• ALAT invalidation. In certain circum-
stances, utilization and performance
increase when a thread yields pipeline
resources to the background thread while
waiting for some system events. For exam-
ple, spin-lock codes can allocate an address
into the ALAT and then yield execution
to the background thread. When an exter-
nal access invalidates the ALAT entry, the
action causes a thread switch back to the
yielding thread. This event lets the threads
share core-execution resources efficiently
while decreasing the total time the soft-
ware spends in critical sections.

• Switch hint. The Itanium architecture
provides the hint@pause instruc-
tion, which can trigger a thread switch to
yield execution to the background
thread. The software can then indicate
when the current thread does not need
core resources.

• Low-power mode. When the active thread
has transitioned to a quiesced low-power
mode, the action triggers a thread switch
to the background thread so that it can
continue execution. If both threads are
in a quiesced low-power state, an inter-
rupt targeting the background thread
awakens the thread and triggers a thread
switch, while an interrupt targeting the
foreground thread just awakens the fore-
ground thread.

Given that reducing the negative impact of
memory latency is the primary motivation for

14

HOT CHIPS 16

IEEE MICRO

having two threads, the most common switch
event is the L3 cache/data return. Other
events, such as the timeout, provide fairness,
while the ALAT invalidation and switch hint
events provide paths for the software to influ-
ence thread switches.

Switching based on thread urgency
Each thread has an urgency that can take

on values from 0 to 7. A value of 0 denotes
that a thread has no useful work to perform.
A value of 7 signifies that a thread was active-
ly making forward progress before it was
forced to the background. The nominal
urgency value of 5 indicates that a thread is
actively progressing.

Figure 4 shows a typical urgency-based
switch scenario. Whenever the software expe-
riences a cache hierarchy miss or a system inter-
face data return (L3 miss/return event), the
thread-switch control logic compares the
urgency values of the two threads. If the
urgency of the foreground thread is lower than
that of the background thread, the control logic
will initiate a thread switch. Every L3 miss
decrements the urgency by 1, eventually satu-
rating at 0. Similarly, every data return from
the system interface increments the urgency by
1 as long as the urgency is below 5.

The thread-switch control logic sets the
urgency to 7 for a thread that switches because
of a timeout event. An external interrupt direct-
ed at the background thread will set the urgency
for that thread to 6, which increases the prob-
ability of a thread switch and provides a rea-
sonable response time for interrupt servicing.

Dual cores and the arbiter
As we described earlier, Montecito is a sin-

gle die with duplicate dual-threaded cores and
caches. The two cores attach to the system
interface through the arbiter, which provides
a low-latency path for each core to initiate and
respond to system events.

Because the two cores share a system inter-
face, the bandwidth demands for the shared-
bus topology effectively double. Consequently,
the system interface bandwidth increases from
6.4 gigabytes per second (GBps) with up to
five electrical loads to 10.66 GBps with up to
three electrical loads. Montecito systems can
use the higher bandwidth three-load design
while maintaining the computational density

of the five-load configuration. The increased
bandwidth easily absorbs the additional pres-
sure that the dual threads put on the system
interface.

Figure 5 is a block diagram of the arbiter,
which organizes and optimizes each core’s
request to the system interface, ensures fair-
ness and forward progress, and collects
responses from each core to provide a unified
system interface response. The arbiter main-
tains each core’s unique identity to the system
interface and operates at a fixed ratio to the
system interface frequency. An asynchronous
interface between the arbiter and each core
lets the core and cache frequency vary as need-
ed to support Foxton technology, which is key
to Montecito’s power-management strategy.

As the figure shows, the arbiter consists of a
set of address queues, data queues, and syn-
chronizers, as well as logic for core and system
interface arbitration. (For simplicity, the fig-

15MARCH–APRIL 2005

5 5

T0 T1

4 5

3 5

4 5

4 4

5 4

5 4

Thread
switch

Thread
switch

T0 executing
T1 in background

T0 issues load that
misses L3 cache

T1 issues load that
misses L3 cache

Load returns from T0

T0 is in background,
initiated another access
before thread switch

Load return from T0 but
T1 is still higher urgency
so no thread switch occurs

Background thread
Foreground thread

Figure 4. Urgency and thread switches on the Montecito
processor.

ure omits the error-correction code (ECC)
encoders/decoders and parity generators.) The
arbitration logic ensures that each core gets an
equal share of bandwidth during peak demand
and low latency access during low demand.

The core initiates one of three types of
accesses, which the arbiter allocates to the fol-
lowing queues and buffers:

• Request queue. This is the primary address
queue that supports most request types.
Each core has four request queues.

• Write address queue. This queue holds
addresses only and handles explicit write-
backs and partial line writes. Each core
has two write address queues.

• Clean castout queue. This queue holds the
address for the clean castout (directory
and snoop filter update) transactions.
The arbiter holds pending transactions
until it issues them on the system inter-
face. Each core has four clean castout
queues.

• Write data buffer. This buffer holds out-
bound data and has a one-to-one corre-
spondence with addresses in the write
address queue. Each core has four write
data buffers, with the additional two
buffers holding implicit writeback data.

Other structures in the arbiter track and initi-
ate communication from the system interface
to the cores. The Snoop queue issues snoop

requests to the cores as need-
ed and coalesces the snoop
response from each core into
a unified snoop response for
the socket.

The arbiter delivers all data
returns directly to the appro-
priate core using a unique
identifier provided with the
initial request. It delivers
broadcast transactions, such
as interrupts and TLB purges,
to both cores in the same way
that delivery would occur if
each core were connected
directly to the system inter-
face.

Fairness and arbitration
The arbiter interleaves core

requests on a one-to-one basis when both cores
have transactions to issue. When only one core
has requests, it can issue its requests without
the other core having to issue a transaction.
Because read latency is the greatest concern,
the read requests are typically the highest pri-
ority, followed by writes, and finally clean
castouts. Each core tracks the occupancy of the
arbiter’s queues using a credit system for flow
control. As requests complete, the arbiter
informs the appropriate core of the type and
number of deallocated queue entries. The
cores use this information to determine which,
if any, transaction to issue to the arbiter.

Synchronization
Given each core’s variable frequency and the

system interface’s fixed frequency, the arbiter
is the perfect place to synchronize the
required communication channels. Montecito
allocates all communication between the core
and the arbiter to an entry in an array, or syn-
chronizer, in that core’s clock domain. The
arbiter then reads from the array’s entries in
its own clock domain. These synchronizers
can send data directly to the core without
queuing when a synchronizer is empty.

With this design, the core can run much
faster or much slower (within limits) than the
arbiter depending on the system’s and cores’
power constraints. Communication from the
arbiter to the core occurs in a similar, but
reversed, manner using the synchronizers. A few

16

HOT CHIPS 16

IEEE MICRO

Core

Core 0

Core 1

L3 cache

Snoops

Snoops

L3 cache

Core

S
yn

ch
ro

ni
ze

r
S

yn
ch

ro
ni

ze
r

Write requests

Castout requests

Read requests

Write requests

Castout requests

Read requests

Snoop coalescing

S
ys

te
m

 in
te

rf
ac

e

System
interface
control

Figure 5. Montecito’s arbiter and its queues.

signals do not need queuing, so simple syn-
chronization for clock-domain crossing suffices.

Power efficiency
If the Montecito design team had taken the

Itanium 2 power requirement of 130W as a
baseline, implementing Montecito using a 90-
nm process would have required power deliv-
ery and dissipation of nearly 300W.2 And this
excludes the additional power required from
the increased resource use resulting from
improvements targeting instruction- and
thread-level parallelism.

Montecito, however, requires only 100W.
Such a power constraint typically comes with
severe frequency sacrifices, but as we described
earlier, Montecito can execute enterprise appli-
cations using all the available cache, thread, and
core features at over 1.8 GHz. Foxton technol-
ogy is one of the key innovations that make this
performance possible.

Dynamic voltage and frequency management
Foxton technology’s goal and methods are

significantly different from those of power-
management technologies in other processors.
Perhaps the greatest difference is that Foxton
technology attempts to tap unused power by
dynamically adjusting processor voltage and
frequency to ensure the highest frequency8

within temperature and power constraints. The
6-Mbyte Itanium 2, for example, consumes
130W for worst case code1 and has power lim-
its that keep it from using a higher voltage, and
thus a higher frequency or performance point.
But low-power applications, such as enterprise
or integer workloads, often consume only
107W. Consequently, 23W of power—and
hence performance—remain untapped.

When Foxton technology detects lower
power consumption, it increases the voltage.
The ensuing frequency boost for enterprise
applications is 10 percent over the base fre-
quency. This frequency change is nearly instan-
taneous and exposes the entire power and
thermal envelope to every application and pro-
tects against power and temperature overages.
Foxton technology also enables optimal sup-
port of demand-based switching (DBS) so that
the operating system or server management
software can lower the overall socket power
requirement when saving power is important.

Voltage and frequency control loops. Figure 6
shows how Foxton technology can provide a
near cubic reduction in power when needed.
An on-chip ammeter feeds into an on-chip
microcontroller that uses digital signal pro-
cessing to determine power consumption.
The microcontroller runs a real-time sched-
uler to support multiple tasks—calibrating
the ammeter, sampling temperature, per-
forming power calculations, and determining
the new voltage level. The microcontroller will
also identify when available control (voltage
or frequency) cannot contain the over-power
or over-temperature condition and indicates
these situations to Montecito’s platform for
mitigation. If catastrophic failures occur in
the cooling system, the microcontroller will
safely shut down the processor.

When the microcontroller detects a need,
it will change the voltage it requests of the
variable voltage supply in 12.5 mV incre-
ments. The voltage control loop responds
within 100 ms.

Voltage-frequency coordination. Because volt-
age directly impacts the transistors’ ability to
operate correctly at a given frequency, Mon-
tecito monitors the voltage throughout the
chip with 24 voltage sensors.9 The sensors
respond to local voltage changes from current-
induced droops and global voltage changes

17MARCH–APRIL 2005

Thermal
sensor

Ammeter

Microcontroller
Variable
voltage
supply

Voltage
sensor

Clock
network

Voltage-to-frequency
converter

Figure 6. How Foxton technology controls voltage and fre-
quency in Montecito. Foxton Technology uses two control
loops, one for voltage and one for frequency. Components
in the gray area are part of Montecito.

that Foxton technology has imposed. The sen-
sors select an appropriate frequency for the
given voltage and coordinate efforts to deter-
mine the appropriate frequency: If one sen-
sor detects a lower voltage, all sensors decrease
frequency. Likewise, the last sensor to mea-
sure a higher voltage enables all detectors to
increase frequency.

A digital frequency divider (DFD) provides
the selected frequency, in nearly 20-MHz
increments and within a single cycle, without
requiring the on-chip phase-locked loops
(PLLs) to resynchronize.10

Thus, Foxton technology can specify a volt-
age, monitor the voltage at the cores, and have
the clock network respond nearly instanta-
neously. The fine increments and response
times in both the clock and the voltage planes
mean that the application can use the entire
power envelope. This contrasts to alternatives
in which the frequency and voltage have spe-
cific pairs and often require PLL resynchro-
nization at transitions, leaving parts of the
power envelope untapped.

Demand-based switching
At times, it makes sense to sacrifice perfor-

mance for lower power, such as when proces-
sor utilization is low. For these cases,
Montecito provides DBS, which lets an oper-
ating system that is monitoring power to spec-
ify a lower power envelope and realize power
savings without adversely affecting perfor-
mance. The operating system can invoke DBS
by selecting from a set of advanced configu-
ration and power interface (ACPI) perfor-
mance states.

Because Montecito varies both voltage and
frequency, systems can realize a significant
power savings through this option with a
small performance impact; typically a 3 per-
cent power change has a 1 percent frequency
change. Additionally, Montecito lets original
equipment manufacturers (OEMs) establish a
maximum power level less than 100W, which
means that Montecito will automatically
adjust its voltage and frequency to fit com-
fortably in a 70W blade or a 100W high-
performance server.

Other sources of power efficiency
Foxton technology and DBS are not the

only innovations that enable Montecito’s

power efficiency. Many improvements
throughout the core and cache increase power
efficiency as well. Clock gating, however, a
design strategy traditionally used to reduce
average power, found limited application in
Montecito. The idea behind clock gating is to
suspend clocks to logic when that logic is idle.
However, because Montecito starts with a
highly utilized pipeline and adds improve-
ments to boost performance, few areas of logic
remain idle for an extended period. Moreover,
turning the suspended clocks back on comes
with a latency that either negatively affects per-
formance or forces speculative clock enabling,
which in turn lessens clock gating’s benefit.

For these reasons, Montecito applies gating
for blatantly useless signal transitions, but
avoids it when clock gating would negatively
affect overall performance. However, in the
L3 cache, the Montecito designers took clock
gating to the extreme by completely remov-
ing the clock for data-array accesses. The asyn-
chronous interface to the L3 data array
drastically lowers the power required to com-
plete a read or write operation. A synchronous
design, with a clock transitioning every cycle
over a large area, is estimated to consume
about 10W more than the asynchronous
design. Montecito designers also replaced
many power-hungry circuits with less aggres-
sive and more power-conscious ones. All these
power savings result in increased frequency
and hence performance.

More “Ilities”
Itanium processors are already known for

their outstanding reliability, availability, and
serviceability (RAS), but Montecito expands
the Itanium 2 RAS by providing protection
for every major processor memory array from
the register file7 to the TLBs and caches.11

Because Montecito parity protects even non-
data-critical resources, when a pair of Mon-
tecito processors operate in lockstep,
Montecito can indicate detected errors exter-
nally and avoid fatal lockstep divergences.

Error reporting
For Montecito, the key to providing reliabil-

ity and availability is a partnership between the
processor—with its array protection, error log-
ging, and precision—and the software stack—
which will correct, contain, and report the

18

HOT CHIPS 16

IEEE MICRO

failure. Montecito provides robust error detec-
tion and correction for critical data. For soft-
ware-based correction and data extraction, it
provides hooks to support low-level array access
and a robust set of information about the event
so that the software stack can mitigate the errors.

Data protection
Montecito’s variety of structures and arrays

results in an approach tailored to the struc-
ture and its purpose. Some arrays use ECC;
others use parity. Some error responses are
immediate; some are deferred. Some errors are
machine correctable; others require mitiga-
tion from the software stack.

Data criticality and structure size deter-
mined the method of structure protection.
Montecito replaced Itanium 2’s parity with
ECCs for key structures, for example, while
adding parity to many structures. The criti-
cality and size also enabled the use of Pellston
technology,11 which maintains availability in
the face of hard errors developed in the L3
cache while providing a mechanism for Mon-
tecito to scrub detected errors. Montecito also
has parity protection for the register files (both
integer and floating point),7 temporary sys-
tem interface data, and L2I data and tag bits.
Parity protects some noncritical elements as
well, such as branch-prediction structures and
some cache-replacement structures. Many
designs ignore these errors, but systems that
use socket-level lockstep to provide higher reli-
ability and data protection require reporting
of such errors externally. If these systems know
that an internally detected error caused a loss
of lockstep, they can recover and so become
available more often. System software can
configure large arrays such as the L3 tag and
data to correct errors in line, which does not
induce a loss of lockstep.

Virtualization support
Customers continue to demand a better

return on their computational technology
investment, particularly ease of management.
Ways to achieve that return include consoli-
dated workloads, resource management, and
optimized processor utilization.

Montecito’s virtualization technology, a
mixture of hardware and firmware, provides
a conduit for efficient virtual machine moni-
tor (VMM) implementations. VMMs address

management requirements by allowing mul-
tiple operating system instances to utilize the
underlying hardware at the same time with-
out any knowledge at the operating-system
level that the processor is shared.

Virtualization support in Montecito includes
a fast mechanism to switch between guest and
host modes, a virtual address protection scheme
to isolate the guests’ address space from that of
the VMM host, and privileged resource-access
interceptions with a new virtualization fault to
abstract the processor from the OS. The huge
amount of processing capability a single Mon-
tecito provides means that virtual machine sup-
port will allow multiple virtual partitions to
coexist and share this power.

These features, when combined with key
firmware support, let VMM software abstract
the processor from the operating system such
that a single processor can run multiple oper-
ating systems while each operating system
thinks it has complete control of the processor.

Intel designed the Montecito processor to
address the enterprise, technical, and inte-

ger workloads. Important attributes for suc-
cess in these areas include reliability, power
efficiency, and of course performance. While
Foxton technology advances Montecito as a
power-efficient design, the core, cache hier-
archy, dual-thread and dual-core changes pro-
vide Montecito with top end performance.

Overall, supporting dual threads in Mon-
tecito cost relatively little and we expect per-
formance to increase 8 to 30 percent over other
Itanium processors, depending on the system
and workload. Figure 7 shows relative perfor-
mance for integer, technical, and enterprise
workloads. The integer and technical work-
loads essentially scale with frequency for the
previous Itanium processors, but Montecito’s
core changes should allow it to perform better
than raw frequency would provide. Mon-
tecito’s enterprise performance stands out over
previous Itanium processors, in large part
because of Montecito’s dual threads and dual
cores. Montecito, with its high performance,
low power and many capabilities, is well pre-
pared and suited for the server market. MICRO

Acknowledgments
We thank the Montecito design, verification

and performance-evaluation teams for their

19MARCH–APRIL 2005

contributions in successfully delivering the first
dual-thread, dual-core Itanium processor. The
work we describe in this article would not have
been possible without the contribution of each
individual on those teams.

References
1. S. Rusu et al., “Itanium 2 Processor 6M:

Higher Frequency and Larger L3 Cache,”
IEEE Micro, vol. 24, no. 2, Mar.-Apr. 2004,
pp. 10-16.

2. S. Naffziger et al., “The Implementation of
a 2-core, Multi-threaded Itanium Family
Processor,” Int’l Solid State Circuits Conf.
Digest of Technical Papers, IEEE Press, Feb
2005, pp. 182-183.

3. C. McNairy and D. Soltis, “Itanium 2
Processor Microarchitecture,” IEEE Micro,
vol. 23, no. 2, Mar.-Apr. 2003, pp. 44-55.

4. M. Mock et al., “An Empirical Study of Data
Speculation Use on the Intel Itanium 2
Processor,” to be published in Proc.
Workshop Interaction Between Compilers
and Computer Architecture, IEEE CS Press,
2005.

5. J. Wuu et al., “The Asynchronous 24 MB
On-Chip Level 3 Cache for a Dual-core
Itanium Architecture Processor,” Int’l Solid
State Circuits Conf. Digest of Technical
Papers, IEEE Press, Feb 2004, pp. 488-487.

6. L. Spracklen et al., “Effective Instruction
Prefetching in Chip Multiprocessors for
Modern Commercial Applications,” Proc.
High-Performance Computer Architecture,
IEEE CS Press, 2005, pp. 225-236.

7. E. Fetzer et al., “The Multi-threaded, Parity

Protected, 128 Word Register Files on a Dual-
core Itanium Architecture Processor,” Int’l
Solid State Circuits Conf. Digest of Technical
Papers, IEEE Press, 2005, pp. 382-383.

8. C. Poirier et al., “Power and Temperature
Control on a 90 nm Itanium Architecture
Processor,” Int’l Solid State Circuits Conf.
2005 Digest of Technical Papers, IEEE
Press, 2005, pp. 304-305.

9. E. Fetzer et al., “Clock Distribution on a Dual-
core, Multi-threaded Itanium Architecture
Processor,” Int’l Solid State Circuits Conf.
Digest of Technical Papers, IEEE Press,
2005, pp. 292-293.

10. T. Fischer et al., “A 90 nm Variable Frequency
Clock System for a Power-Managed Itanium
Architecture Processor,” Int’l Solid State
Circuits Conf. Digest of Technical Papers,
IEEE Press, 2005, pp. 294-295.

11. C. McNairy and J. Mayfield, “Montecito
Error Protection and Mitigation,” to be
published in Proc. Workshop High-
Performance Computing Reliability Issues,
IEEE CS Press, 2005.

Cameron McNairy is an architect for the
Montecito program at Intel. He was also a
microarchitect for the Itanium 2 processor,
contributing to its design and final validation.
In future endeavors, McNairy plans to focus
on performance; reliability, availability, and
serviceability; and system interface issues in
Itanium processor design. He received a BSEE
and an MSEE from Brigham Young Univer-
sity and is a member of the IEEE.

Rohit Bhatia is an Itanium processor microar-
chitect at Intel. His research interests include
computer architecture, Itanium processor
microarchitecture, and the functional verifi-
cation of microprocessors. Bhatia has an
MSEE from the University of Minnesota and
an MS in engineering management from Port-
land State University.

Direct questions and comments about this
article to Cameron McNairy, Intel, 3400 East
Harmony Rd., HRM1-1, Fort Collins, CO
80528; cameron.mcnairy@intel.com.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

20

HOT CHIPS 16

IEEE MICRO

Montecito

Itanium 2
(9 Mbytes)

Itanium 2
(6 Mbytes)

Itanium 2

0 1 2 3
Performance improvement factor

Enterprise
Technical
Integer

Figure 7. Estimated performance of Montecito relative to
previous Itanium 2 processors.

