
Marc Tremblay

1. Michael O‘Connor

Sun Microelectronics

Issuing four

instructions per cycle,

this wo rksta tio n/server

processor uses the

Visual Instruction Set

and a nonblocking

memo y system to

accelerate multimedia

applications .

Itrasparc I is a second-generation
superscalar processor. It is a high-
performance, highly integrated, four-

issue superscalar processor based on the
Sparc Version 9 64-bit RISC architecture.’ We
have extended the core instruction set to
include graphics instructions that provide the
most common operations related to two-
dimensional image processing; two- and
three-dimensional graphics and image com-
pression algorithms; and parallel operations
on pixel data with 8-, 16-, and 32-bit coni-
ponents. Additional, new memory access
instructions support the very high bandwidth
requirements typical of graphics and multi-
media applications.

A 200-MHz UltraSparc with a 2-Mbyte exter-
nal cache delivers an estimated 322 SPECint92
and 462 SPEGfp92. UltraSparc can decode
broadcast-quality MPEG-2 streams and move
data to or from main memory at a rate of 1.6
Gbytes/s peak or 700 Mbytes/s sustained.

UltraSparc can sustain the execution of up
to four instructions per cycle, even in the
presence of conditional branches and cache
misses. This is due mainly to the decoupled
aspect of the units feeding instructions and
data to the rest of the pipeline. Those instruc-
tions predicted to execute issue in program
order to multiple functional units, execute in
parallel, and, for added parallelism, can com-
plete out of order. To further increase the
number of instructions executed per cycle,
instructions from two basic blocks (that is,
instructions before and after a conditional
branch) can issue in the same group.

The UltraSparc die (Figure 1) includes

a lG-Kbyte, pseudo-two-way set-asso-
ciative instruction cache;

* a 64-entry, fully associative instruction
translation look-aside buffer (TLB);

* a lG-Kbyte, direct-mapped write-
through data cache;

a 64-entry, fully associative data trans-
lation look-aside buffer,

0 nine functional units,
a nine-entry-deep load buffer, - an eight-entry-deep store buffer, and - logic to control the 144-bit external bus

The first implementation of UltraSparc
uses a 0.5-micron process with four layers
of metal, resulting in a 310-mm2 die com-
posed of 5.2 million transistors. The 521-pin
chip typically dissipates 28W at 167 MHz.

Microarchitecture
UltraSparc s design dedicates only 1 6 mil

lion transistors to the basic data arrays of the
16-Kbyte instruction cache and the 16-Kbyte
data cache, which cover a combined area of
around 15 percent of the chip We could
have dedicated an area two- or three-times
larger than that to caches, 100 Kbytes of on-
chip cache are possible using 0 5-micron
technology This, however, is still insufficient
for large applications Instead, we elected to
dedicate transistors to a decoupled memory
subsystem, to registers and control structures
that reduce operating system overhead, and
to the graphics unit that accelerates new
media functions (New media includes net-
working functions such as data copying,
encryption and check summing, as well as
multimedia) We describe the various blocks
forming the microarchitecture of UltraSparc,
introducing them in the same order in which
instructions typically progress through the
pipeline

Front end. The first block handling
instructions is the prefetch and dispatch unit
(the PDU, which is the shaded part of Figure
2) To keep the execution units busy, the
PDU fetches instructions before the execu-
tion unit actually needs them, or even before
it is known that they will be needed This
unit can prefetch instructions from all

42 /€€€Micro 0272-1732/96/$5.00 0 1996 IEEE

Figure 1. UltraSparc I die photo.

levels of the memory hierarchy: the instruction cache, exter-
nal cache, and/or main memory. A dynamic branch predic-
tion scheme implemented in hardwarez prefetches across
conditional branches. The prediction mechanism bases a
branch outcome on a 2-bit history of the branch. A Next field3
associated with every four instructions in the instruction cache
points to the next instruction cache line for the PDU to fetch.
Using the Next field makes it possible to follow taken branch-
es and provide nearly the same instruction bandwidth
achieved running sequential code. The instruction buffer
stores up to 12 prefetched instructions until they proceed to
the rest of the pipeline.

The 16-Kbyte instruction cache consists of two sets of 256
lines; each line contains eight 32-byte instructions. The 14
bits required to access any location in the instruction cache
are the 13 least significant bits of the address and 1 bit that
predicts the set in which instructions reside. (Since the min-
imum page size is 8 Kbytes, the 13 bits are always part of
the page offset and do not need translation.) Out of a line of
eight instructions, the cache sends up to four instructions to
the instruction buffer, depending on the address. If the
address points to one of the last three instructions in the line,
the cache sends only that instruction and the ones between
it and the end of the line. (We rejected hardware support for
taking instructions from two adjacent lines for the sake of
simplicity and timing considerations.) Consequently, for ran-
dom accesses, the PDU fetches 3.25 instructions on the aver-
age from the instruction cache. For sequential accesses, the
fetch rate may be greater than four instructions per cycle,
equaling or surpassing the consumption rate of the pipeline
(up to four instructions per cycle).

Due to the decoupled nature of the instruction buffer, an
instruction cache miss does not necessarily result in bubbles

prediction
cache

64
entries

41 1- I

entries t l 2

instructions

l - - r - -L

Figure 2. UltraSparc f ront end (shaded blocks); other blocks
included t o show front end's connection t o the rest of the
processor. The dotted line indicates that the second-level
cache is off chip.

being inserted into the pipeline. Part of the instruction cache
miss processing, or even all of it, can overlap the execution
of instructions already in the instruction buffer that await
grc'uping and execution. The decoupled behavior of the PDU
also helps when an instruction cache miss occurs during a
pipeline stall (for example, due to a multicycle integer divide,
floating-point divide dependency, dependency on load data
that missed in the data cache, and so on). The miss (or part
of it) may be transparent to the pipeline.

IJltraSparc predicts the outcome of branches and based on
those results, fetches the instructions that are likely to execute
next. Although we accomplish this dynamically in hardware,
the compiler has an impact on the initialization of the state
machine. UltraSparc uses the static bit provided by BPcc and
FBPfcc instructions to set the state machine in either the like-
ly t.aken or the likely not-taken state (Figure 3, next page).

€or branches without prediction (Bicc or FBfcc), UltraSparc
initializes the state machine to likely not taken. A branch ini-
tialized to likely taken does not produce a correct next field
for the very next instruction cache fetch, since it takes one

April1996 43

Initialization
PT~AN;A, , I Dispatch unit I

PNT/AT

ANT Actual not taken PNT Predicted not taken
AT Actual taken PT Predicted taken

LNT Likely not taken SNT Strongly not taken
LT Likely taken ST Strongly taken

Figure 3. Dynamic branch prediction transition diagram.

extra cycle to generate the correct address (the branch off-
set added to the program counter). This results in the loss of
two cycles for fetching instructions, yet does not necessari-
ly lead to a pipeline stall. Such a penalty is much less than
the mispredicted-branch penalty (four cycles) that would
occur if the processor always ignored the branch prediction
bit and used a static prediction (that is, always taken).

Figure 3 shows the state machine representing the branch
prediction algorithm. Several slightly different algorithms
based on this 2-bit counter mechanism can be implemented.
Simulations on a large set of benchmarks showed that this
one provides the smallest misprediction rate.

For loops in steady state, we designed the algorithm so that
it requires two mispredictions for the prediction to change
from taken to not taken. Each loop exit will thus cause a sin-
gle misprediction (versus two for a 1-bit dynamic scheme).

Integer'execution unit. The IEU (Figure 4) typically han-
dles 60 percent of the dynamic instruction mix for applications
such as transaction processing, compilers, text processing, and
so on. All integer computations as well as branches requiring
the contents of a register go through this unit. Two MUS per-
form all common arithmetic and logical functions; each is 64
bits wide. The multiplier processes 2 bits of the multiplicand
per cycle and has an early-out feature. With this mechanism,
the result is ready as soon as the hardware detects that the most
significant bits of the multiplicand are all zeroes (or all ones
for a negative number). SPECint92 simulations showed that the
multiplier's average latency is around five cycles.

The divider computes one bit per cycle. We dedicate a
separate adder to computing the virtual address (VA) of loads
and stores. In this way UltraSparc can perform a memory
access in parallel with two other instructions requiring a 64-
bit ALU, to allow more parallelism than other four-way,
superscalar processors may offer.*

We implement the eight register windows as a three-dimen-
sional register file.5 A novel implementation groups corre-
sponding bits from all windows together logically (that is, bit
ifor register r for all windows 10, ... 71) and in the layout, hid-
ing them underneath the multiple levels of metal. This imple-
mentation reduces the area of the register file significantly and
speeds access time by dedicating a larger buffer to mutually
exclusive bits. UltraSparc's design implements multilevel trap
registers as specified by the 64-bit Sparc Version 9 instruction

$ 7 read addresses

3x64
_-

- -7
register file + '

Integer

4 global sets I r+. ---- A -- 2x64

adder
. .

Shifter Loadktore
unit

I

-. - .
Register-

based CTls
Condition 1 codes 1 Integer
multiply:

_. .- .-

__

i
r-- P4 - u64
I Completion unit
I _ . I

I

Figure 4. Integer execution unit (shaded blocks).

set architecture The five trap levels that the architecture sup-
ports reduce system overhead significantly In some
mtancesregister window overflow, for example-these reg-
isters reduce the overhead by an ordei of magnitude

Floating-point and graphics unit. We partitioned the
FGU into five separate execution units, allowing the
UltraSparc processor to issue and execute two floating-point
mstructions per cycle As Figure 5 shows, UltraSparc includes
a floating-point adder, and divide/square-root
unit,' and a graphics adder and multiplier Source and result
data are stored in the 32 entry register file, in which each
entry can contain a 32- or 64-bit value Most instructions are
fully pipelined (with a throughput of one per cycle), have a
latency of 3 cycles, and remain unaffected by operand pre-
cision Instructions have the same latency foi single or dou-
ble precision

Our design does not pipeline the divide and square-root
instructions, which execute in 1 2 cycles for single precision
('22 for double precision) However, such instructions do not
stall the processor The processor may issue and execute
other instructions that follow the divide or square-root
instruction, and retire their results to the register file before
the divide or square-root instiuction finishes Synchronizing
the floating-point pipeline with the integer pipeline and pre
dicting traps for long-latency operations maintains a precise-
exception model

UltraSparc introduces a comprehensive set of graphics
instructions that provide fast hardware support for 2D and
3D image and video processing, image compression, audio

44 IEEEMicro

I Dispatch unit 1 I Register file I
$ 5 read addresses

Floating-point/

Store data register file

32 registers
(64 bits each)

4x64

I 4

Load/store
unit

I / 2x64

7
Completion unit

I

Figure 5. Floating-point and graphics un i t (shaded blocks).

processing, and so on. The processor provides 16- and 32-bit-
partitioned add, Boolean, and compare operands, and also
supports 8- and 16-bit-partitioned multiplies. Operations sup-
ported by the FGU include single-cycle pixel distance, data
alignment, packing, and merge. Two dedicated functional
units, the graphics multiplier and graphics adder, handle most
of the multimedia instructions supported by UltraSparc.

Memory management and load/store units. The MMU
provides mapping between a 44-bit virtual address and 41-
bit physical address (PA). We accomplish this through a 64-
entry instruction TLB and a 64-entry data TLB; both are fully
associative. UltraSparc provides hardware support for a soft-
ware-based TLB miss strategy as well as a separate set of
global registers to process MMU traps. It also supports page
sizes of 8 Kbytes (13-bit offset), 64 Kbytes (16-bit offset), 512
Kbytes (19-bit offset), and 4 Mbytes (22-bit offset).

The load/store unit (Figure 6) generates the virtual address
of all loads and stores (including atomics and address space
identifier loads). In addition, this unit handles data cache
accesses and decouples load misses and stores from the
pipeline through the load buffer and the store buffer. One
load or one store can issue per cycle.

The data cache is a write-through, non-write-allocating,
16-Kbyte, direct-mapped cache with two 16-byte subblocks
per line. We organized it as 512 lines with 32 bytes per line
that are virtually indexed and physically tagged. The tag array
is dual ported, so tag updates due to line fills do not collide
with tag reads for incoming loads. Snoops to the data cache
use the second tag port, so they do not delay incoming loads.

Virtual
address

44 . b adder VA

DTLB

41
PA

Load Store
buffer buffer

- Address Address Data
64
,

completion I I 128

Figure 6. Loadktore uni t (shaded area).

External cache and memory interface units. The main
role of the ECU is to efficiently handle instruction and data
cache misses. It also handles one access per cycle to the
external cache. Accesses to the external cache are pipelined,
take three cycles (pin to pin), and return 16 bytes of instruc-
tions or data per cycle. This effectively makes the external
cache a part of the main processing pipeline. For programs
with large data sets, we can maintain data in the external
cache and schedule instructions with load latencies based
on external-cache latency. Floating-point applications use
this feature to effectively hide data cache misses. The exter-
nal cache can contain 512 Kbytes, or 1, 2, or 4 Mbytes, but
the line size is always 64 bytes. A MOESI (modified, own,
exclusive, shared, invalid) protocol maintains coherency
across the system.

‘The ECU provides overlap processing during load and
store misses. For instance, stores that hit the external cache
can proceed during load-miss processing. It also indiscrim-
ina.tely processes reads and writes without a costly turn-
around penalty (only 2 cycles) and handles snoops. To
provide high transfer bandwidth without polluting the exter-
nal cache, the unit also efficiently processes block loads and
block stores, which load or store a 64-byte line of data from
memory to the floating-point register file.

The memory interface unit handles all transactions with
the system controller such as external-cache misses, inter-
rupts, snoops, write backs, and so on. It communicates with
the system at either one-half or one-third of the processor
frequency. A complete UltraSparc subsystem (Figure 7 , next
page) consists of the processor, synchronous SRAM compo-
nents for the external-cache tags and data, and two data
burfer chips. These chips isolate the external cache from the

April1996 45

Data addre

UltraSparc
processor E-cache data SRAM

Groups and
dispatches
up to 4
instructions

Accesses
register file

L

Executes Accesses Determines Integer
integer data-cache data-cache waits for
instructions and TLB hit or miss floating-

virtual branches load enters graphics
addresses load buffer pipeline

Calculates Resolves Deferred point/

-data bua

I ~ System
address bus

Figure 7. UltraSparc subsystem. (UDB i s t h e UltraSparc
data bu f f er.)

system, provide data buffers for incoming and outgoing sys-
tem transactions, and error correction code generation and
checking.

Processor pipeline
UltraSparc contains a nine-stage pipeline, and most instruc-

tions go through the pipeline in exactly nine stages. We con-
sider instructions terminated after they go through the last
(Write) stage; after that, changes to the processor state are
irreversible. Figure 8 shows a diagram of the integer and
floating-point pipeline stages.

To simplify pipeline synchronization and exception han-
dling, we add three stages to the integer pipeline to make it
symmetrical with the floating-point pipeline. This also elim-
inates the need for a floating-point queue. The design uses

Fetch I F
Fetches
instructions
from
Instruction-
cache

I

special logic to prevent these additional stages from creating
new critical paths on the machine

Floating-point instructions with a latency greater than 3
cycles (divide and square-root instructions) behave differ-
ently than others, the pipeline “extends” when the instruc-
tion reaches stage N1 Memory operations proceed
asynchronously with the pipeline to support latencies longer
than the latency of the on-chip data cache

Hardware-software interaction
We designed UltraSparc to efficiently execute existing

Sparc application programs in binary code and provide a
performance improvement factor of about three over the
previous generation of machines running the same code.
Recompiling code to take advantage of several UltraSparc
features offers a significantly larger performance gain.

Multiple-instruction issue. One of the most important
contributions to improved application performance is
UltraSparc 1’s ability to dispatch up to four instructions every
cycle. The logic in the pipeline’s grouping stage (Figure 8)
enforces restrictions on precisely which instructions the
processor can dispatch under which circumstances. ‘During
each cycle, the processor generally dispatches a group of four
instructions that includes up to two integer, floating-point, or
graphics instructions; one load or store; and one branch
instruction. Because UltraSparc I only issues instructions in
strict program order, the order of instructions in the code can
be important. To maintain the maximum possible issue rate,
the compiler must consider issue restrictions and arrange the
code to initiate as many instructions as possible in each cycle.

Typically, the grouping stage does not allow a data- or con-
trol-dependent instruction to dispatch in the same cycle with
the instruction that it depends on (Figure 9a). To improve
performance, the grouping stage relaxes this requirement in

Integer pipeline

D G E C NI N2
Decode 1 Group 1 Execute 1 Cache 1 1 access

Decodes
and sends
instructions
to
instruction
buffer

R
Register

decodes
floating-
point/
graphics
instructioi

Accesses
register
files

Further

15

xi

Execution
starts

x2

Execution
continues

x3

Execution
finishes

N3

Resolves
traps

w
Write

Writes all
results to
register
files

I

Floating-point/graphics pipeline

Figure 8. UltraSparc pipeline stages (simplified).

46 IEEE Micro

add G E C NI N2 N3 W
sub G E C NI Nz N, W

(4
setcc G E C N1 N, N3 W
bicc G E C NI N2 N3 W

(b)

add G E C N j N2 N3 W
st G E C NI NZ N3 W

(cl

Figure 9. Grouping of an add and i t s dependent subtract
instruction (a); an instruction setting a condition code
and i t s dependent conditional branch (b); and an add and
i ts dependent store instruction (c).

some instances. Because of its organization, the pipeline
requires neither the condition that a branch needs to test nor
the data a store instruction will write until after the execution
stage. This allows a branch to issue in the same group as the
instruction that sets its condition codes (Figure 9b). Similarly,
an integer instruction that calculates a result and the store of
that result can issue in the same cycle (Figure 9c).

The ability to issue up to four instructions each cycle can
yield a substantial performance gain over earlier processors.
Proper scheduling of the code by the compiler (or assembly
language programmer) is key to unlocking this performance
improvement.

Data stream issues. Another area in which the hardware
and software closely interact is the data memory subsystem.
With a processor capable of executing four instructions per
cycle, the rate of data accesses can increase substantially over
that of a processor with a lower issue bandwidth. As a result,
the data memory hierarchy must provide data to the execu-
tion pipelines at a sustained rate that keeps pace with the
execution rate. Since code often consists of approximately 25
percent load and store instructions, UltraSparc I can expect
a load or store every cycle. Therefore, the memory subsys-
tem design supports very close to an average of one load or
store per cycle and maintains this support even in the event
of cache misses in the on-chip data cache. Compilers must
schedule code appropriately to take advantage of this feature.

The latency of a load that hits in the data cache depends
on the opcode. For unsigned loads, the processor can use
data two cycles after the load. For instance, if the first two
instructions in the instruction buffer are a load and an instruc-
tion dependent on that load, the grouping logic breaks the
group after the load and inserts a bubble in the pipeline dur-
ing the following cycle. Code compiled for an earlier Sparc
processor with a load-use penalty of one cycle shows a
penalty of about 0.1 cycle per instruction just for this rule.
Thus, it is very important to separate loads from instructions
that depend on them.

Under normal circumstances (that is, no snoops, arbitra-
tion conflict for the external-cache bus, and so on), the exter-
nal cache returns a load that misses in the data cache but
hits in the external cache six cycles later than if it hits in the

loadr, F D G E C N, Q Q Q Q Q
iuser, F D G G G E E E E E E E N, N, N, W

I I
Group break Execution resumes

Figure IO. Data cache miss, external-cache hit. (Shading
indicates seven-cycle stall).

load rl
load r2
load r3
load r4
load r5
load rs
load r,
load r8
use rl

G E C N I Q Q Q Q Q
G E C N,Q Q Q Q Q

G E C N1Q Q Q Q Q
G E C N,Q Q Q Q Q

G E C N i Q Q Q Q Q
G E C N,Q Q Q Q Q

G E C N i Q Q Q Q Q
G E C N1Q Q Q Q Q

G E C NI N2 N3 W

Figure 11. Pipelined loads t o the external cache. Shading
shows six cycles separating a load f rom the instruction
using i t s value.

data cache. Thus, if a use immediately follows a load, the
grouping stage breaks the group, and a seven-cycle stall
occurs (Figure 10).

13ecause of the high penalty associated with a load miss for
code scheduled based on loads hitting in the data cache,
UltraSparc provides hardware support for nonblocking loads.
It does this through a load buffer that allows code schedul-
ing based on external-cache hits. For applications with a
working set too large to fit in the data cache (capacity miss-
es) or applications with data patterns generating many con-
flict misses, a compiler may schedule the code so that data
accesses effectively bypass the data cache. The application
then relies on all data to come from the external cache.
A load that misses the data cache does not necessarily stall

the pipeline (nonblocking loads): It merely goes to the load
buffer where it waits until the data requested from the exter-
nal cache returns. The pipeline stalls only when an instruc-
tion dependent on the load enters the pipeline before the
load data arrives.
A load that misses in the data cache goes into the load

buffer. The load buffer depth and the interaction of the load
buffer with the rest of the pipeline support full throughput
(one load per cycle) for an external cache with a three-cycle
latency (pin to pin) and one-cycle throughput. As shown in
Figure 11, if eight cycles separate the use from the load, no
stall occurs, and the program execution achieves full
throughput. This scheduling requires six more cycles
between the load and the instruction using its value than
data cache scheduling.
Pu Figure 11 shows, the load buffer must be at least seven

entries deep to accommodate all pipelined loads in the steady
state. The buffer requires two additional entries to hold seven
loads and allow two more to issue (without having to stall
theim). One extra entry is in stage E, the other, in C (loads enter
the load buffer in N,), making the load buffer nine entries deep.

April1996 47

.cilign sta1 16 bytes
Id !start],%fO (U-Ccche miss)

Id [stat t 161,':;Vl (0-Cache muss)
Id [start + 24].":16 (D-Cache hi)

Id [start + 81.%i2 (D-Cschc hit)

Figure 12. Interleaved data cache hits and misses t o the
same subblock.

3 2 1
1 3 5 7 0

rsl

rs2

* * * *
I MSB 1 MSB I MSB 1 MSB

Figure 13. MUL8x16 instruction.

When a load enters the load buffer, the processor compares
the memory location the load will access to that of all other
(older) loads in the buffer. If other loads are to the same 16-
byte subblock, the processor marks the entering load as a hit.
This is because by the time it accesses the data cache array,
the subblock will be present (Figure 12). The detection of a
hit eliminates a transaction in the external cache and makes
more slots available for other external-cache bus clients (such
as the instruction cache, store buffer, and snoops). It is thus
desirable to organize the code to access data sequentially. This
may involve interchanging loops so that array subscripts incre-
ment by one between each load access.

One of the primary techniques in scheduling loads for the
external cache is scheduling the load as early as possible in
the instruction streain. Moving instructions to a position in the
instruction stream before conditional branches can effective-
ly hide the latencies of long operations; it also increases the
number of candidate instructions that the compiler can sched-
ule without conflicts. Sparc Version 9 provides nonfaulting
loads (equivalent to silent loads used for Multiflow's Trace
and Cydrome's Cydra-5 computers), allowing loads to move
ahead of conditional control structures that regulate their use.

Nonfaulting loads execute as any other loads except that
catastrophic errors, such as segmentation fault conditions,
do not cause program termination. The hardware and soft-
ware (via a trap handler) cooperate so that the load appears
to complete normally with a zero result. To minimize page
faults when a speculative load references a Null pointer
(address zero), it is desirable to map low addresses (espe-
cially address zero) to a page of all zeros and use the non-
faulting-only page attribute bit.

Simulations of commonly used codes on UltraSparc have
shown that programs have much to gain by using nonfault-
ing loads For integer programs, the average group size sent
through the pipeline is 33 percent larger with code motion
allowed across one branch (using speculative loads) When
we move instructions ahead two branches, the groups
become 50 percent larger

Multimedia support. By far, the most substantial opportu-
mty on UltraSparc I for software to enhance performance is by
taking advantage of our new multimedia instruction set, VIS
Graphics speed has a big effect on a workstation users per
ceptlon of performance Graphics functionality is increasingly
sophsticated and includes desktop video for teleconferencing
and broadcast-quality viewing, 3D visualization and animation,
mage manipulation for desktop publishing, and so on

Until now, these applications often required specialized
graphics hardware Typically, one or mole graphics cards
added functionality to the base machine For example, one
card would add MPEG-1 decompression capabilities, and a
system would require a separate caid to support 3D visual-
ization Implementing support for these applications direct-
ly on the processor may eliminate the need for additional
graphics cards and lead to better overall system cost as well
as free valuable I/O slots

The lack of a standard platform supporting these features
has hindered the development of multimedia application soft-
ware With UltraSparc, we saw an opportunity to provide a
standard multmedia capability for future Sparc systems with
only a 3 percent increase in the die area Programmeis can
use the 30 new VIS instructions as they do other RISC instruc-
tions on UltraSparc These instructions neither use memory-
mapped I/O nor access special I/O devices

The heart of VIS is a set of instructions optimized for the
data types typically used in multimedia algorithms These
data types are 8 , 16-, and 32-bit integer or fixed-point val-
ues Since UltraSparc I already had 64-bit data paths and ieg-
isters for its execution units, the new instructions often
operate on two 32-bit values, four 16-bi1, or eight %bit val
ues at once Thus VIS makes full use of resources that would
have been wasted by an instruction set with operations not
optimized for multimedia data types

We defined the instructions themselves by examining a
variety of graphics and multimedia algorithms Any potential
instruction had to meet three requirements, it must

* execute in a single cycle or be easily pipelined,
be applicable to several algorithms, and
not affect the cycle time

The result was RISC principles applied to multimedia. In
other words, RISC-based VIS incorporates the fundamental
operations present in most graphics and multimedja algorithms.
Microprocessors may implement these instructions with rela-
tive ease and in a high-performance, fully pipelined manner.

VIS instructions fall into a few basic categories. First, at its
core are instructions that perform various operations on the
new data types; for example, the MUL8x16 instruction
(Figure 13). This instruction performs pairwise multiplica-
tion of four &bit values with four 16-bit fixed-point values.

48 IEEE Micro

The second class of VIS instructions includes conversion
instructions between various data types. The FEXPAND
instruction, for instance, takes four 8-bit values and converts
them into four 16-bit fixed-point values. Finally, we added
instructions that accelerate memory access to meet the
demanding requirements of most multimedia and graphics
applications. Programmers may use the block load and store
instructions that move 64-byte blocks of data into and out
of registers to implement a very fast block-copy routine.
Kohn et al.8 give a complete description of VIS.

The various VIS instructions often require several tradi-
tional integer RISC instructions to perform the same func-
tion. Such RISC instructions are typically integer ALU
operations, but UltraSparc I achieves benefits by imple-
menting the VIS instructions on the floating-point side.

We added the VIS execution units to the floating-point unit
mainly for four reasons. First, more registers are available
because programs can store graphics data in all 32 floating-
point registers while storing addresses and loop indices in
integer registers. Second, programs do not typically use float-
ing-point units concurrently with VIS instructions, which
means that we can devote the issue slots normally ,used for
floating-point instructions to VIS instructions. This achieves
the maximum parallelism. Third, some instructions have a
three-cycle latency that fits naturally into the floating-point
pipeline design.

Fourth, UltraSparc’s design bases the basic cycle time of
the machine around key data path components dictated by
the integer side of the processor (that is, ALUs, data cache
access, and so on). Implementing VIS instructions on the
integer side would have introduced extra gate levels in the
adder (to allow intermediate carries to propagate for normal
adds), added new functional units (four signed multipliers),
and required more bypasses into critical mutiplexers.

In addition to the benefits discussed earlier, implement-
ing VIS on the processor means that performance scales with
frequency upgrades. Typically, processor frequency follows
an aggressive curve due to gate shrinkage and/or process
shrinkage (that is, moving from 0.5-micron CMOS to 0.35
micron). Such upgrade opportunities are typically not avail-
able or do not improve as rapidly on the ASICs common in
graphics or multimedia acceleration boards.

Scaling also occurs with multiprocessor systems. Many
multimedia applications lend themselves well to multi-
threading, which often attains speedup that is linear with an
increasing number of processors.

Existing software libraries implement commonly used
algorithms, such as MPEG-2, using VIS instructions. Thus,
for many functions, the effort required to attain performance
enhancements is relatively small, because library routines
are already available.

One of VIS’S primary benefits is its ability to implement a
variety of algorithms, and limiting users to the prepared soft-
ware libraries would inhibit this flexibility. Unfortunately,
compiler technology has not advanced to the point where it
can automatically detect situations in which VIS instructions
might be appropriate. Thus, software developers must spend
a bit more effort to take advantage of VIS. A C program can
call a set of macros that generate each of the VIS instruc-

tions. Compilers can perform register allocation and sched-
uling as for any other C call, so programmers need not devel-
op a detailed knowledge of UltraSparc’s microarchitecture.

11 quantitative evaluation of VIS applied to a class of engi-
neering algorithms has demonstrated speedups of 2.5 to 7
times9 over such algorithms’ non-VIS implementations. Zhou
et al. also describe the use of VIS in a broadcast-quality MPEG
player.’

WITH INCREASINGLY POWERFUL optimizing compil-
ers, the interaction between hardware and software becomes
more important, and designers must give that interaction a
high priority when designing a high-end microprocessor. It
was our goal to describe part of this boundary here.

We have applied the concepts presented here to the
UltraSparc 11 microarchitecture to further enhance its perfor-
mance. An added prefetch instruction allows the compiler to
better control when data enters the cache. By scheduling
prefetch instructions appropriately, the compiler can elimi-
nate stalls due to the processor waiting for main memory.
Data is simply preloaded in a level of the memory hierarchy
closer to the processor pipeline. Other extensions contribute
to improving UltraSparc 11’s performance to an estimated 465
SPECint92 and 660 SPECfp92 for a 300-MHz part. R

Acknowledgments
We acknowledge the work of other members of the archi-

tecmre team, specifically L. Kohn and G. Maturana. Key mem-
bers of the logic design team at Sun are J. Bauman, R.
Eltejaein, P. Ferolito, P. Fu, D. Greenhill, D. Greenley, G.P.
Grewal, K. Holdbrook, B. Kim, H. Kwan, M. Levitt, C.
Narasimhaiah, K. Normoyle, N. Parveen, M. Wong, and R. Yu.

References
1. D.L. Weaver and T. Germond, The Sparc Architecture Manual,

Version 9, Prentice Hall, Englewood Cliffs, N.J., 1994.
2. J.E. Smith, ”A Study of Branch Prediction Strategies,” Roc.

Eighth Ann. Int‘l Symp. Computer Architecture, IEEE Computer
Society Press, Los Alamitos, Calif., 1981, pp. 135-148.

3. B. Calder and D. Grunwald, “Next Cache Line and Set
Prediction,” Roc. 22ndAnn. Int’l Symp. Computer Architecture,
IEEE CS Press, 1995, pp. 287-297.

4. J.H. Edmondson, P. Rubenfeld, and R. Preston, “Superscalar
Instruction Execution in the 21 164 Alpha Microprocessor,“ /E€
Micro, Vol. 15, No. 2, Apr. 1995, pp. 33-43.

5. M. Tremblay, B. Joy, and K. Shin, ”AThree Dimensional Register
File for Superscalar Processors,” froc. 28th Ann. Hawaii Int’l
Con{ SystemsSciences, IEEE CS Press, 1995, pp. 191-201.

6. R.K. Yu and G.B. Zyner, “167 MHz Radix-4 Floating Point
Multiplier,” froc. 12th Symp. Computer Arithmetic, IEEE CS
Press, 1995, pp. 149-1 54.

7. J.A. Prabhu and G.B. Zyner, ”167 MHz Radix-8 Divide and
Squareroot Using Overlapped Radix-2 Stages,” Doc. 12th Symp.
ComputerArithmetic, IEEE CS Press, 1995, pp. 155-162.

April1996 49

Your coniplete source for importaiit
discoveries in computer science!

TER SOCIETY '95
1 lection

ISBN 0-8 186-7360-5. April 1996.
Cataiog # SW00049 - $89.95 Members / $695.00 List

IEEE Computer Society periodicals are the
most requested and most important collection
of computing literature available. Now for the
first time we are offering a year-end CD-ROM
of all 1995 Computer Society magazines and
transactions. The CD-ROM contains:
e 1 6 Computer Society magazines

and transactions (all 1995 issues)
0 Full text and graphics
0 Fully searchable text

Features the complete editorial content from
e Computer
* IEEE Micro
* IEEE Expert
* IEEE Software
0 IEEE Multimedia
e IEEE Design & Test of Computers ,

e IEEE Parallel & Distributed
* IEEE Computer Graphics &
* IEEE Computational Science h' Engineering
* IEEE Annals of the History of Computing

IEEE Transactions on Computers
0 IEEE Transactions on Software Engineering
* IEEE Transactions on Parallel & Distributed Systems

IEEE Transactions on Knowledge & Data Engineering
e IEEE Transactions on Visualization & Computer Graphics
0 IEEE Transactions on Pattern Analysis & Machine Intelligence

TO order tali: +1-800-CS-B00KS
E-maii: C S . ~ C J & S .. cor?iputer.org

8 L Kohn et al , "The Visual Instruction Set VIS in UltraSPARC,"
Proc Compcon, IEEE CS Press, 1995, pp 462-469

9 M Tremblay et al , "AVisual Instruction Set VIS for New Media
Processors," submitted to /€€E Muo, Aug 1996

10 C Zhou et al , "MPEG Video Decoding with the UltraSparc
Visual Instruction Set," f roc Compcon, I E E E CS Press, 1995,
pp 470-475

Marc Tremblay is a computer architect
mvolved in the research and development
of high-performance processors at Sun
Microsystems As an architect for
UltraSparc I and 11, his main contributions
have focused on microarchitecture defin-
ition and processor performance evalua-

tion His current work relates to integrating extensive
multmedia capabdities drectly onto the processor and design-
ing processors that more efficiently execute Java applications
He is also a member of Sun's Architecture Group, which the
company chartered to investigate and propose novel proces-
sor architectures

Tremblay holds MS and PhD degrees in computer science
from the University of California, Los Angeles, and a BS in
physics engineering from Lava1 University in Canada He is
a member of the ZEE Computer Society.

J. Michael O'Connor is a inember of the
Architecture Group at Sun Microsystems,
where he is involved in the research and
development of high-performance micro-
processors He participated in the siinu-
lation and performance analysis of the

include computer architecture, hardware-software codesign,
and performance analysis.

O'Connor holds a BSEE from Rice University and an MSEE
from the University of Texas at Austin. He is a member of
the IEEE Computer Society.

Direct questions concerning this article to Marc Tremblay,
Sun Microelectronics, Sun Microsystems Inc., USUN02-301,
2550 Garcia Ave., Mountain View, CA 94043; tremblay
@eng.sun.com.

Reader Interest Survey
Indicate your interest in this article by circlmg the appropriate
number on the Reader Service Card

Low 156 Medium 157 High 158

http://cor?iputer.org
mailto:eng.sun.com

