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Itrasparc I is a second-generation 
superscalar processor. It is a high- 
performance, highly integrated, four- 

issue superscalar processor based on the 
Sparc Version 9 64-bit RISC architecture.’ We 
have extended the core instruction set to 
include graphics instructions that provide the 
most common operations related to two- 
dimensional image processing; two- and 
three-dimensional graphics and image com- 
pression algorithms; and parallel operations 
on pixel data with 8-, 16-, and 32-bit coni- 
ponents. Additional, new memory access 
instructions support the very high bandwidth 
requirements typical of graphics and multi- 
media applications. 

A 200-MHz UltraSparc with a 2-Mbyte exter- 
nal cache delivers an estimated 322 SPECint92 
and 462 SPEGfp92. UltraSparc can decode 
broadcast-quality MPEG-2 streams and move 
data to or from main memory at a rate of 1.6 
Gbytes/s peak or 700 Mbytes/s sustained. 

UltraSparc can sustain the execution of up 
to four instructions per cycle, even in the 
presence of conditional branches and cache 
misses. This is due mainly to the decoupled 
aspect of the units feeding instructions and 
data to the rest of the pipeline. Those instruc- 
tions predicted to execute issue in program 
order to multiple functional units, execute in 
parallel, and, for added parallelism, can com- 
plete out of order. To further increase the 
number of instructions executed per cycle, 
instructions from two basic blocks (that is, 
instructions before and after a conditional 
branch) can issue in the same group. 

The UltraSparc die (Figure 1) includes 

a lG-Kbyte, pseudo-two-way set-asso- 
ciative instruction cache; 

* a 64-entry, fully associative instruction 
translation look-aside buffer (TLB); 

* a lG-Kbyte, direct-mapped write- 
through data cache; 

a 64-entry, fully associative data trans- 
lation look-aside buffer, 

0 nine functional units, 
a nine-entry-deep load buffer, - an eight-entry-deep store buffer, and - logic to control the 144-bit external bus 

The first implementation of UltraSparc 
uses a 0.5-micron process with four layers 
of metal, resulting in a 310-mm2 die com- 
posed of 5.2 million transistors. The 521-pin 
chip typically dissipates 28W at 167 MHz. 

Microarchitecture 
UltraSparc s design dedicates only 1 6 mil 

lion transistors to the basic data arrays of the 
16-Kbyte instruction cache and the 16-Kbyte 
data cache, which cover a combined area of 
around 15 percent of the chip We could 
have dedicated an area two- or three-times 
larger than that to caches, 100 Kbytes of on- 
chip cache are possible using 0 5-micron 
technology This, however, is still insufficient 
for large applications Instead, we elected to 
dedicate transistors to a decoupled memory 
subsystem, to registers and control structures 
that reduce operating system overhead, and 
to the graphics unit that accelerates new 
media functions (New media includes net- 
working functions such as data copying, 
encryption and check summing, as well as 
multimedia ) We describe the various blocks 
forming the microarchitecture of UltraSparc, 
introducing them in the same order in which 
instructions typically progress through the 
pipeline 

Front end. The first block handling 
instructions is the prefetch and dispatch unit 
(the PDU, which is the shaded part of Figure 
2) To keep the execution units busy, the 
PDU fetches instructions before the execu- 
tion unit actually needs them, or even before 
it is known that they will be needed This 
unit can prefetch instructions from all 
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Figure 1. UltraSparc I die photo. 

levels of the memory hierarchy: the instruction cache, exter- 
nal cache, and/or main memory. A dynamic branch predic- 
tion scheme implemented in hardwarez prefetches across 
conditional branches. The prediction mechanism bases a 
branch outcome on a 2-bit history of the branch. A Next field3 
associated with every four instructions in the instruction cache 
points to the next instruction cache line for the PDU to fetch. 
Using the Next field makes it possible to follow taken branch- 
es and provide nearly the same instruction bandwidth 
achieved running sequential code. The instruction buffer 
stores up to 12 prefetched instructions until they proceed to 
the rest of the pipeline. 

The 16-Kbyte instruction cache consists of two sets of 256 
lines; each line contains eight 32-byte instructions. The 14 
bits required to access any location in the instruction cache 
are the 13 least significant bits of the address and 1 bit that 
predicts the set in which instructions reside. (Since the min- 
imum page size is 8 Kbytes, the 13 bits are always part of 
the page offset and do not need translation.) Out of a line of 
eight instructions, the cache sends up to four instructions to 
the instruction buffer, depending on the address. If the 
address points to one of the last three instructions in the line, 
the cache sends only that instruction and the ones between 
it and the end of the line. (We rejected hardware support for 
taking instructions from two adjacent lines for the sake of 
simplicity and timing considerations.) Consequently, for ran- 
dom accesses, the PDU fetches 3.25 instructions on the aver- 
age from the instruction cache. For sequential accesses, the 
fetch rate may be greater than four instructions per cycle, 
equaling or surpassing the consumption rate of the pipeline 
(up to four instructions per cycle). 

Due to the decoupled nature of the instruction buffer, an 
instruction cache miss does not necessarily result in bubbles 

prediction 
cache 

64 
entries 

41 1- I 

entries t l 2  

instructions 

l - - r - -L  

Figure 2. UltraSparc f ront end (shaded blocks); other blocks 
included t o  show front end's connection t o  the rest of  the 
processor. The dotted line indicates that the second-level 
cache is off chip. 

being inserted into the pipeline. Part of the instruction cache 
miss processing, or even all of it, can overlap the execution 
of instructions already in the instruction buffer that await 
grc'uping and execution. The decoupled behavior of the PDU 
also helps when an instruction cache miss occurs during a 
pipeline stall (for example, due to a multicycle integer divide, 
floating-point divide dependency, dependency on load data 
that missed in the data cache, and so on). The miss (or part 
of it) may be transparent to the pipeline. 

IJltraSparc predicts the outcome of branches and based on 
those results, fetches the instructions that are likely to execute 
next. Although we accomplish this dynamically in hardware, 
the compiler has an impact on the initialization of the state 
machine. UltraSparc uses the static bit provided by BPcc and 
FBPfcc instructions to set the state machine in either the like- 
ly t.aken or the likely not-taken state (Figure 3, next page). 

€or branches without prediction (Bicc or FBfcc), UltraSparc 
initializes the state machine to likely not taken. A branch ini- 
tialized to likely taken does not produce a correct next field 
for the very next instruction cache fetch, since it takes one 
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Initialization 
PT~AN;A, , I Dispatch unit I 

PNT/AT 

ANT Actual not taken PNT Predicted not taken 
AT Actual taken PT Predicted taken 

LNT Likely not taken SNT Strongly not taken 
LT Likely taken ST Strongly taken 

Figure 3. Dynamic branch prediction transition diagram. 

extra cycle to generate the correct address (the branch off- 
set added to the program counter). This results in the loss of 
two cycles for fetching instructions, yet does not necessari- 
ly lead to a pipeline stall. Such a penalty is much less than 
the mispredicted-branch penalty (four cycles) that would 
occur if the processor always ignored the branch prediction 
bit and used a static prediction (that is, always taken). 

Figure 3 shows the state machine representing the branch 
prediction algorithm. Several slightly different algorithms 
based on this 2-bit counter mechanism can be implemented. 
Simulations on a large set of benchmarks showed that this 
one provides the smallest misprediction rate. 

For loops in steady state, we designed the algorithm so that 
it requires two mispredictions for the prediction to change 
from taken to not taken. Each loop exit will thus cause a sin- 
gle misprediction (versus two for a 1-bit dynamic scheme). 

Integer'execution unit. The IEU (Figure 4) typically han- 
dles 60 percent of the dynamic instruction mix for applications 
such as transaction processing, compilers, text processing, and 
so on. All integer computations as well as branches requiring 
the contents of a register go through this unit. Two MUS per- 
form all common arithmetic and logical functions; each is 64 
bits wide. The multiplier processes 2 bits of the multiplicand 
per cycle and has an early-out feature. With this mechanism, 
the result is ready as soon as the hardware detects that the most 
significant bits of the multiplicand are all zeroes (or all ones 
for a negative number). SPECint92 simulations showed that the 
multiplier's average latency is around five cycles. 

The divider computes one bit per cycle. We dedicate a 
separate adder to computing the virtual address (VA) of loads 
and stores. In this way UltraSparc can perform a memory 
access in parallel with two other instructions requiring a 64- 
bit ALU, to allow more parallelism than other four-way, 
superscalar processors may offer.* 

We implement the eight register windows as a three-dimen- 
sional register file.5 A novel implementation groups corre- 
sponding bits from all windows together logically (that is, bit 
ifor register r for all windows 10, ... 71) and in the layout, hid- 
ing them underneath the multiple levels of metal. This imple- 
mentation reduces the area of the register file significantly and 
speeds access time by dedicating a larger buffer to mutually 
exclusive bits. UltraSparc's design implements multilevel trap 
registers as specified by the 64-bit Sparc Version 9 instruction 
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Figure 4. Integer execution unit (shaded blocks). 

set architecture The five trap levels that the architecture sup- 
ports reduce system overhead significantly In some 
mtancesregister window overflow, for example-these reg- 
isters reduce the overhead by an ordei of magnitude 

Floating-point and graphics unit. We partitioned the 
FGU into five separate execution units, allowing the 
UltraSparc processor to issue and execute two floating-point 
mstructions per cycle As Figure 5 shows, UltraSparc includes 
a floating-point adder, and divide/square-root 
unit,' and a graphics adder and multiplier Source and result 
data are stored in the 32 entry register file, in which each 
entry can contain a 32- or 64-bit value Most instructions are 
fully pipelined (with a throughput of one per cycle), have a 
latency of 3 cycles, and remain unaffected by operand pre- 
cision Instructions have the same latency foi single or dou- 
ble precision 

Our design does not pipeline the divide and square-root 
instructions, which execute in 1 2  cycles for single precision 
('22 for double precision) However, such instructions do not 
stall the processor The processor may issue and execute 
other instructions that follow the divide or square-root 
instruction, and retire their results to the register file before 
the divide or square-root instiuction finishes Synchronizing 
the floating-point pipeline with the integer pipeline and pre 
dicting traps for long-latency operations maintains a precise- 
exception model 

UltraSparc introduces a comprehensive set of graphics 
instructions that provide fast hardware support for 2D and 
3D image and video processing, image compression, audio 
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Figure 5.  Floating-point and graphics un i t  (shaded blocks). 

processing, and so on. The processor provides 16- and 32-bit- 
partitioned add, Boolean, and compare operands, and also 
supports 8- and 16-bit-partitioned multiplies. Operations sup- 
ported by the FGU include single-cycle pixel distance, data 
alignment, packing, and merge. Two dedicated functional 
units, the graphics multiplier and graphics adder, handle most 
of the multimedia instructions supported by UltraSparc. 

Memory management and load/store units. The MMU 
provides mapping between a 44-bit virtual address and 41- 
bit physical address (PA). We accomplish this through a 64- 
entry instruction TLB and a 64-entry data TLB; both are fully 
associative. UltraSparc provides hardware support for a soft- 
ware-based TLB miss strategy as well as a separate set of 
global registers to process MMU traps. It also supports page 
sizes of 8 Kbytes (13-bit offset), 64 Kbytes (16-bit offset), 512 
Kbytes (19-bit offset), and 4 Mbytes (22-bit offset). 

The load/store unit (Figure 6) generates the virtual address 
of all loads and stores (including atomics and address space 
identifier loads). In addition, this unit handles data cache 
accesses and decouples load misses and stores from the 
pipeline through the load buffer and the store buffer. One 
load or one store can issue per cycle. 

The data cache is a write-through, non-write-allocating, 
16-Kbyte, direct-mapped cache with two 16-byte subblocks 
per line. We organized it as 512 lines with 32 bytes per line 
that are virtually indexed and physically tagged. The tag array 
is dual ported, so tag updates due to line fills do not collide 
with tag reads for incoming loads. Snoops to the data cache 
use the second tag port, so they do not delay incoming loads. 

Virtual 
address 

44 . b adder VA 

DTLB 

41 
PA 

Load Store 
buffer buffer 

- Address Address Data 
64 
, 

completion I I 128 

Figure 6. Loadktore uni t  (shaded area). 

External cache and memory interface units. The main 
role of the ECU is to efficiently handle instruction and data 
cache misses. It also handles one access per cycle to the 
external cache. Accesses to the external cache are pipelined, 
take three cycles (pin to pin), and return 16 bytes of instruc- 
tions or data per cycle. This effectively makes the external 
cache a part of the main processing pipeline. For programs 
with large data sets, we can maintain data in the external 
cache and schedule instructions with load latencies based 
on external-cache latency. Floating-point applications use 
this feature to effectively hide data cache misses. The exter- 
nal cache can contain 512 Kbytes, or 1, 2, or 4 Mbytes, but 
the line size is always 64 bytes. A MOESI (modified, own, 
exclusive, shared, invalid) protocol maintains coherency 
across the system. 

‘The ECU provides overlap processing during load and 
store misses. For instance, stores that hit the external cache 
can proceed during load-miss processing. It also indiscrim- 
ina.tely processes reads and writes without a costly turn- 
around penalty (only 2 cycles) and handles snoops. To 
provide high transfer bandwidth without polluting the exter- 
nal cache, the unit also efficiently processes block loads and 
block stores, which load or store a 64-byte line of data from 
memory to the floating-point register file. 

The memory interface unit handles all transactions with 
the system controller such as external-cache misses, inter- 
rupts, snoops, write backs, and so on. It communicates with 
the system at either one-half or one-third of the processor 
frequency. A complete UltraSparc subsystem (Figure 7 ,  next 
page) consists of the processor, synchronous SRAM compo- 
nents for the external-cache tags and data, and two data 
burfer chips. These chips isolate the external cache from the 
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Figure 7. UltraSparc subsystem. (UDB i s  t h e  UltraSparc 
data bu f f  er.) 

system, provide data buffers for incoming and outgoing sys- 
tem transactions, and error correction code generation and 
checking. 

Processor pipeline 
UltraSparc contains a nine-stage pipeline, and most instruc- 

tions go through the pipeline in exactly nine stages. We con- 
sider instructions terminated after they go through the last 
(Write) stage; after that, changes to the processor state are 
irreversible. Figure 8 shows a diagram of the integer and 
floating-point pipeline stages. 

To simplify pipeline synchronization and exception han- 
dling, we add three stages to the integer pipeline to make it 
symmetrical with the floating-point pipeline. This also elim- 
inates the need for a floating-point queue. The design uses 

Fetch I F  
Fetches 
instructions 
from 
Instruction- 
cache 

I 

special logic to prevent these additional stages from creating 
new critical paths on the machine 

Floating-point instructions with a latency greater than 3 
cycles (divide and square-root instructions) behave differ- 
ently than others, the pipeline “extends” when the instruc- 
tion reaches stage N1 Memory operations proceed 
asynchronously with the pipeline to support latencies longer 
than the latency of the on-chip data cache 

Hardware-software interaction 
We designed UltraSparc to efficiently execute existing 

Sparc application programs in binary code and provide a 
performance improvement factor of about three over the 
previous generation of machines running the same code. 
Recompiling code to take advantage of several UltraSparc 
features offers a significantly larger performance gain. 

Multiple-instruction issue. One of the most important 
contributions to improved application performance is 
UltraSparc 1’s ability to dispatch up to four instructions every 
cycle. The logic in the pipeline’s grouping stage (Figure 8) 
enforces restrictions on precisely which instructions the 
processor can dispatch under which circumstances. ‘During 
each cycle, the processor generally dispatches a group of four 
instructions that includes up to two integer, floating-point, or 
graphics instructions; one load or store; and one branch 
instruction. Because UltraSparc I only issues instructions in 
strict program order, the order of instructions in the code can 
be important. To maintain the maximum possible issue rate, 
the compiler must consider issue restrictions and arrange the 
code to initiate as many instructions as possible in each cycle. 

Typically, the grouping stage does not allow a data- or con- 
trol-dependent instruction to dispatch in the same cycle with 
the instruction that it depends on (Figure 9a). To improve 
performance, the grouping stage relaxes this requirement in 
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Figure 8. UltraSparc pipeline stages (simplified). 
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Figure 9. Grouping of an add and i t s  dependent subtract 
instruction (a); an instruction setting a condition code 
and i t s  dependent conditional branch (b); and an add and 
i ts  dependent store instruction (c). 

some instances. Because of its organization, the pipeline 
requires neither the condition that a branch needs to test nor 
the data a store instruction will write until after the execution 
stage. This allows a branch to issue in the same group as the 
instruction that sets its condition codes (Figure 9b). Similarly, 
an integer instruction that calculates a result and the store of 
that result can issue in the same cycle (Figure 9c). 

The ability to issue up to four instructions each cycle can 
yield a substantial performance gain over earlier processors. 
Proper scheduling of the code by the compiler (or assembly 
language programmer) is key to unlocking this performance 
improvement. 

Data stream issues. Another area in which the hardware 
and software closely interact is the data memory subsystem. 
With a processor capable of executing four instructions per 
cycle, the rate of data accesses can increase substantially over 
that of a processor with a lower issue bandwidth. As a result, 
the data memory hierarchy must provide data to the execu- 
tion pipelines at a sustained rate that keeps pace with the 
execution rate. Since code often consists of approximately 25 
percent load and store instructions, UltraSparc I can expect 
a load or store every cycle. Therefore, the memory subsys- 
tem design supports very close to an average of one load or 
store per cycle and maintains this support even in the event 
of cache misses in the on-chip data cache. Compilers must 
schedule code appropriately to take advantage of this feature. 

The latency of a load that hits in the data cache depends 
on the opcode. For unsigned loads, the processor can use 
data two cycles after the load. For instance, if the first two 
instructions in the instruction buffer are a load and an instruc- 
tion dependent on that load, the grouping logic breaks the 
group after the load and inserts a bubble in the pipeline dur- 
ing the following cycle. Code compiled for an earlier Sparc 
processor with a load-use penalty of one cycle shows a 
penalty of about 0.1 cycle per instruction just for this rule. 
Thus, it is very important to separate loads from instructions 
that depend on them. 

Under normal circumstances (that is, no snoops, arbitra- 
tion conflict for the external-cache bus, and so on), the exter- 
nal cache returns a load that misses in the data cache but 
hits in the external cache six cycles later than if it hits in the 

loadr, F D G E C N, Q Q Q Q Q 
iuser, F D G G G E E E E E E E N, N, N, W 

I I 
Group break Execution resumes 

Figure IO. Data cache miss, external-cache hit. (Shading 
indicates seven-cycle stall). 
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Figure 11. Pipelined loads t o  the external cache. Shading 
shows six cycles separating a load f rom the instruction 
using i t s  value. 

data cache. Thus, if a use immediately follows a load, the 
grouping stage breaks the group, and a seven-cycle stall 
occurs (Figure 10). 

13ecause of the high penalty associated with a load miss for 
code scheduled based on loads hitting in the data cache, 
UltraSparc provides hardware support for nonblocking loads. 
It does this through a load buffer that allows code schedul- 
ing based on external-cache hits. For applications with a 
working set too large to fit in the data cache (capacity miss- 
es) or applications with data patterns generating many con- 
flict misses, a compiler may schedule the code so that data 
accesses effectively bypass the data cache. The application 
then relies on all data to come from the external cache. 
A load that misses the data cache does not necessarily stall 

the pipeline (nonblocking loads): It merely goes to the load 
buffer where it waits until the data requested from the exter- 
nal cache returns. The pipeline stalls only when an instruc- 
tion dependent on the load enters the pipeline before the 
load data arrives. 
A load that misses in the data cache goes into the load 

buffer. The load buffer depth and the interaction of the load 
buffer with the rest of the pipeline support full throughput 
(one load per cycle) for an external cache with a three-cycle 
latency (pin to pin) and one-cycle throughput. As shown in 
Figure 11, if eight cycles separate the use from the load, no 
stall occurs, and the program execution achieves full 
throughput. This scheduling requires six more cycles 
between the load and the instruction using its value than 
data cache scheduling. 
Pu Figure 11 shows, the load buffer must be at least seven 

entries deep to accommodate all pipelined loads in the steady 
state. The buffer requires two additional entries to hold seven 
loads and allow two more to issue (without having to stall 
theim). One extra entry is in stage E, the other, in C (loads enter 
the load buffer in N,), making the load buffer nine entries deep. 
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same subblock. 

3 2 1  
1 3  5 7 0  

rsl 

rs2 

* * * * 
I MSB 1 MSB I MSB 1 MSB 

Figure 13. MUL8x16 instruction. 

When a load enters the load buffer, the processor compares 
the memory location the load will access to that of all other 
(older) loads in the buffer. If other loads are to the same 16- 
byte subblock, the processor marks the entering load as a hit. 
This is because by the time it accesses the data cache array, 
the subblock will be present (Figure 12). The detection of a 
hit eliminates a transaction in the external cache and makes 
more slots available for other external-cache bus clients (such 
as the instruction cache, store buffer, and snoops). It is thus 
desirable to organize the code to access data sequentially. This 
may involve interchanging loops so that array subscripts incre- 
ment by one between each load access. 

One of the primary techniques in scheduling loads for the 
external cache is scheduling the load as early as possible in 
the instruction streain. Moving instructions to a position in the 
instruction stream before conditional branches can effective- 
ly hide the latencies of long operations; it also increases the 
number of candidate instructions that the compiler can sched- 
ule without conflicts. Sparc Version 9 provides nonfaulting 
loads (equivalent to silent loads used for Multiflow's Trace 
and Cydrome's Cydra-5 computers), allowing loads to move 
ahead of conditional control structures that regulate their use. 

Nonfaulting loads execute as any other loads except that 
catastrophic errors, such as segmentation fault conditions, 
do not cause program termination. The hardware and soft- 
ware (via a trap handler) cooperate so that the load appears 
to complete normally with a zero result. To minimize page 
faults when a speculative load references a Null pointer 
(address zero), it is desirable to map low addresses (espe- 
cially address zero) to a page of all zeros and use the non- 
faulting-only page attribute bit. 

Simulations of commonly used codes on UltraSparc have 
shown that programs have much to gain by using nonfault- 
ing loads For integer programs, the average group size sent 
through the pipeline is 33 percent larger with code motion 
allowed across one branch (using speculative loads) When 
we move instructions ahead two branches, the groups 
become 50 percent larger 

Multimedia support. By far, the most substantial opportu- 
mty on UltraSparc I for software to enhance performance is by 
taking advantage of our new multimedia instruction set, VIS 
Graphics speed has a big effect on a workstation users per 
ceptlon of performance Graphics functionality is increasingly 
sophsticated and includes desktop video for teleconferencing 
and broadcast-quality viewing, 3D visualization and animation, 
mage manipulation for desktop publishing, and so on 

Until now, these applications often required specialized 
graphics hardware Typically, one or mole graphics cards 
added functionality to the base machine For example, one 
card would add MPEG-1 decompression capabilities, and a 
system would require a separate caid to support 3D visual- 
ization Implementing support for these applications direct- 
ly on the processor may eliminate the need for additional 
graphics cards and lead to better overall system cost as well 
as free valuable I/O slots 

The lack of a standard platform supporting these features 
has hindered the development of multimedia application soft- 
ware With UltraSparc, we saw an opportunity to provide a 
standard multmedia capability for future Sparc systems with 
only a 3 percent increase in the die area Programmeis can 
use the 30 new VIS instructions as they do other RISC instruc- 
tions on UltraSparc These instructions neither use memory- 
mapped I/O nor access special I/O devices 

The heart of VIS is a set of instructions optimized for the 
data types typically used in multimedia algorithms These 
data types are 8 , 16-, and 32-bit integer or fixed-point val- 
ues Since UltraSparc I already had 64-bit data paths and ieg- 
isters for its execution units, the new instructions often 
operate on two 32-bit values, four 16-bi1, or eight %bit val 
ues at once Thus VIS makes full use of resources that would 
have been wasted by an instruction set with operations not 
optimized for multimedia data types 

We defined the instructions themselves by examining a 
variety of graphics and multimedia algorithms Any potential 
instruction had to meet three requirements, it must 

* execute in a single cycle or be easily pipelined, 
be applicable to several algorithms, and 
not affect the cycle time 

The result was RISC principles applied to multimedia. In 
other words, RISC-based VIS incorporates the fundamental 
operations present in most graphics and multimedja algorithms. 
Microprocessors may implement these instructions with rela- 
tive ease and in a high-performance, fully pipelined manner. 

VIS instructions fall into a few basic categories. First, at its 
core are instructions that perform various operations on the 
new data types; for example, the MUL8x16 instruction 
(Figure 13). This instruction performs pairwise multiplica- 
tion of four &bit values with four 16-bit fixed-point values. 
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The second class of VIS instructions includes conversion 
instructions between various data types. The FEXPAND 
instruction, for instance, takes four 8-bit values and converts 
them into four 16-bit fixed-point values. Finally, we added 
instructions that accelerate memory access to meet the 
demanding requirements of most multimedia and graphics 
applications. Programmers may use the block load and store 
instructions that move 64-byte blocks of data into and out 
of registers to implement a very fast block-copy routine. 
Kohn et al.8 give a complete description of VIS. 

The various VIS instructions often require several tradi- 
tional integer RISC instructions to perform the same func- 
tion. Such RISC instructions are typically integer ALU 
operations, but UltraSparc I achieves benefits by imple- 
menting the VIS instructions on the floating-point side. 

We added the VIS execution units to the floating-point unit 
mainly for four reasons. First, more registers are available 
because programs can store graphics data in all 32 floating- 
point registers while storing addresses and loop indices in 
integer registers. Second, programs do not typically use float- 
ing-point units concurrently with VIS instructions, which 
means that we can devote the issue slots normally ,used for 
floating-point instructions to VIS instructions. This achieves 
the maximum parallelism. Third, some instructions have a 
three-cycle latency that fits naturally into the floating-point 
pipeline design. 

Fourth, UltraSparc’s design bases the basic cycle time of 
the machine around key data path components dictated by 
the integer side of the processor (that is, ALUs, data cache 
access, and so on). Implementing VIS instructions on the 
integer side would have introduced extra gate levels in the 
adder (to allow intermediate carries to propagate for normal 
adds), added new functional units (four signed multipliers), 
and required more bypasses into critical mutiplexers. 

In addition to the benefits discussed earlier, implement- 
ing VIS on the processor means that performance scales with 
frequency upgrades. Typically, processor frequency follows 
an aggressive curve due to gate shrinkage and/or process 
shrinkage (that is, moving from 0.5-micron CMOS to 0.35 
micron). Such upgrade opportunities are typically not avail- 
able or do not improve as rapidly on the ASICs common in 
graphics or multimedia acceleration boards. 

Scaling also occurs with multiprocessor systems. Many 
multimedia applications lend themselves well to multi- 
threading, which often attains speedup that is linear with an 
increasing number of processors. 

Existing software libraries implement commonly used 
algorithms, such as MPEG-2, using VIS instructions. Thus, 
for many functions, the effort required to attain performance 
enhancements is relatively small, because library routines 
are already available. 

One of VIS’S primary benefits is its ability to implement a 
variety of algorithms, and limiting users to the prepared soft- 
ware libraries would inhibit this flexibility. Unfortunately, 
compiler technology has not advanced to the point where it 
can automatically detect situations in which VIS instructions 
might be appropriate. Thus, software developers must spend 
a bit more effort to take advantage of VIS. A C program can 
call a set of macros that generate each of the VIS instruc- 

tions. Compilers can perform register allocation and sched- 
uling as for any other C call, so programmers need not devel- 
op a detailed knowledge of UltraSparc’s microarchitecture. 

11 quantitative evaluation of VIS applied to a class of engi- 
neering algorithms has demonstrated speedups of 2.5 to 7 
times9 over such algorithms’ non-VIS implementations. Zhou 
et al. also describe the use of VIS in a broadcast-quality MPEG 
player.’ 

WITH INCREASINGLY POWERFUL optimizing compil- 
ers, the interaction between hardware and software becomes 
more important, and designers must give that interaction a 
high priority when designing a high-end microprocessor. It 
was our goal to describe part of this boundary here. 

We have applied the concepts presented here to the 
UltraSparc 11 microarchitecture to further enhance its perfor- 
mance. An added prefetch instruction allows the compiler to 
better control when data enters the cache. By scheduling 
prefetch instructions appropriately, the compiler can elimi- 
nate stalls due to the processor waiting for main memory. 
Data is simply preloaded in a level of the memory hierarchy 
closer to the processor pipeline. Other extensions contribute 
to improving UltraSparc 11’s performance to an estimated 465 
SPECint92 and 660 SPECfp92 for a 300-MHz part. R 
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