
730272-1732/99/$10.00 1999 IEEE

The UltraSPARC-III is the third gen-
eration of Sun Microsystems’ most powerful
microprocessors, which are at the heart of Sun’s
computer systems. These systems, ranging
from desktop workstations to large, mission-
critical servers, require the highest performance
that the UltraSPARC line has to offer. The
newest design permits vendors the scalability
to build systems consisting of 1,000+ Ultra-
SPARC processors. Furthermore, the design
ensures compatibility with all existing SPARC
applications and the Solaris operating system.

The UltraSPARC-III design extends Sun’s
SPARC Version 9 architecture, a 64-bit exten-
sion to the original 32-bit SPARC architec-
ture that traces its roots to the Berkeley
RISC-I processor.1 Table 1 (next page) lists
salient microprocessor pipeline and physical
attributes. The UltraSPARC-III design target
is a 600-MHz, 70-watt, 19-mm die to be built
in 0.25-micron CMOS with six metal layers
for signals, clocks, and power.

Architecture design goals
In defining the newest microprocessor’s

architecture, we began with a set of four high-
level goals for the systems that would use the
UltraSPARC-III processor. These goals were
shaped by team members from marketing,
engineering, management, and operations in
Sun’s processor and system groups.

Compatibility
With more than 10,000 third-party applica-

tions available for SPARC processors, compat-
ibility—with both application and operating
system—is an essential goal and primary fea-
ture of any new SPARC processor. Previous
SPARC generations required a corresponding,
new operating system release to accommodate
changes in the privileged interface registers,
which are visible to the operating system. This
in turn required all third-party applications to
be qualified on the new operating system before
they could run on the new processor. Main-
taining the same privileged register interface in
all generations eliminated the delay inherent in
releasing a new operating system.

Part of our compatibility goal included
increasing application program perfor-
mance—without having to recompile the
application—by more than 90%. Further-
more, this benefit had to apply to all applica-
tions, not just those that might be a good
match for the new architecture. This goal
demanded a sizable microarchitecture perfor-
mance increase while maintaining the pro-
grammer-visible characteristics (such as
number of functional units and latencies)
from previous generations of pipelines.

Performance
To design high performance into the Ultra-

Tim Horel and
Gary Lauterbach

Sun Microsystems

EVERY DECISION HAS AT LEAST ONE ASSOCIATED TRADE-OFF. SYSTEM

ARCHITECTS ULTIMATELY ARRIVED AT THIS 64-BIT PROCESSOR DESIGN AFTER

A CHALLENGING SERIES OF DECISIONS AND TRADE-OFFS.

ULTRASPARC-III:
Designing Third-Generation 64-Bit Performance

SPARC-III, we believed we needed—and
have—a unique approach. Recent research
shows that the trend for system architects is to
design ways of extracting more instruction-level
parallelism from programs. In considering many
aggressive ILP extraction techniques for the
UltraSPARC-III, we discovered that they share

a common undesirable characteristic—the
speedup varies greatly across a set of programs.

Relying on ILP techniques for most of the
processor’s performance increase would not
deliver the desired performance boost. ILP
techniques vary greatly from program to pro-
gram because many programs or program sec-
tions use algorithms that are serially data
dependent. Figure 1 shows an example of a
serially data-dependent algorithm.

In a high-performance processor such as the
UltraSPARC-III, several iterations of the loop
can concurrently execute. Figure 1 shows three
iterations overlapped in time. The time it
takes these three iterations to execute depends
on the latency of the load instruction. If the
load executes with a single-cycle latency, then
the maximum overlap occurs, and the proces-
sor can execute three instructions each cycle.
As the load latency increases, the amount of
ILP overlap decreases, as Table 2 shows.

Many ILP studies have assumed latencies
of 1 for all instructions, which can cause mis-
leading results. In a nonacademic machine,
the load instruction latency is not a constant
but depends on the memory system’s cache
hit rates, resulting in a fractional average laten-
cy. The connection between ILP (or achieved
ILP, commonly referred to as instructions per
cycle—IPC or 1/CPI) and operation latency
makes these units cumbersome to analyze for
determining processor performance.

One design consideration was an average
latency measurement of a data dependency
chain (ending at a branch instruction) for the
SPEC95 integer suite. The measurement was
revealing: The average dependent chain in
SPEC95 consisted of a serial-data-dependent
chain with one and a half arithmetic or logi-
cal operations (on average, half of a load
instruction), ending with a branch instruc-
tion. A simplified view is that SPEC95 inte-
ger code is dominated by load-test-branch
data dependency chains.

We realized that keeping the execution
latency of these short dependency chains low
would significantly affect the UltraSPARC-
III’s performance. Execution latency is anoth-
er way to view the clock rate’s profound
influence on performance. As the clock rate
scales, all the bandwidths (in operations per
unit time) and latencies (in time per opera-
tion) of a processor scale, proportionately.

74

ULTRASPARC-III

IEEE MICRO

Table 1. UltraSPARC-III pipeline and physical data.

Pipeline feature Parameter

Instruction issue 4 integer
2 floating-point
2 graphics

Level-one (L1) caches Data: 64-Kbyte,4-way
Instruction: 32-Kbyte,4-way
Prefetch: 2-Kbyte,4-way
Write: 2-Kbyte,4-way

Level-two (L2) cache Unified (data and instruction):
4- and 8-Mbyte, 1-way

On-chip tags
Off-chip data

Physical feature Parameter

Process 0.25-micron CMOS, 6 metal layers

Clock 600+ MHz

Die size 360 mm2

Power 760 watts @1.8 volts

Transistor count RAM: 12 million

Logic: 4 million

Package 1,200-pin LGA

Table 2. Load latency increases as ILP decreases.

Instruction-level parallelism Load latency

(instructions per cycle) (cycles)

0.75 4
1.00 3
1.50 2
3.00 1

Time Iteration 1

Loop: Id [r0], r0
 tst r0
 bne Loop

Iteration 2

Loop: Id [r0], r0
 tst r0
 bne Loop

Iteration 3

Loop: Id [r0], r0
 tst r0
 bne Loop

Figure 1. A serially data-dependent algorithm example, which is a simple
search for the end of a linked-list data structure.

Bandwidth (ILP) alone cannot provide a
speedup for all programs; it’s only by scaling
both bandwidth and latency that performance
can be boosted for all programs.

Our focus thus became to scale up the
bandwidths while simultaneously reducing
latencies. This goal should not be viewed sim-
ply as raising the clock rate. It’s possible to
simply raise the clock rate by deeper pipelin-
ing the stages but at the expense of increased
latencies. Each time we insert a pipeline stage,
we incur an additional increment in the clock-
ing overhead (flop delay, clock skew, clock jit-
ter). This forces less actual work to be done
per cycle, thus leading to increased latency (in
absolute nanoseconds). Our goal was to push
up the clock rate while at the same time scal-
ing down the execution latencies (in absolute
nanoseconds).

Scalability
The UltraSPARC-III is the newest genera-

tion of processors that will be based on the
design we describe in this article. We designed
this processor so that as process technology
evolves, it can realize the full potential of future
semiconductor processes. Scalability was there-
fore of major importance. As an example,
research at Sun Labs indicates that propaga-
tion delay in wiring will pose increasing prob-
lems as process geometries decrease.2 We thus
focused on eliminating as many long wires as
possible in the architecture. Any remaining
long wires are on paths that allowed cycles to
be added with minimum performance impact.

Scalability also required designing the on-
chip memory system and the bus interface to
handle multiprocessor systems to be built with
from two to 1,000 UltraSPARC-III processors.

Reliability
A large number of UltraSPARC-III proces-

sors will be used in systems such as transac-
tion servers, file servers, and compute servers.
These mission-critical systems require a high
level of reliability, availability, and service-
ability (RAS) to maximize system uptime and
minimize the time to repair when a failure
does occur.

One of our goal requirements was to detect
as many error conditions as possible. In addi-
tion, we added three more guidelines to
improve system RAS:

• Don’t allow bad data to propagate silently.
For example, when the processor sourc-
ing data on a copy-back operation detects
an uncorrectable cache ECC error, it poi-
sons the outgoing data with a unique,
uncorrectable ECC syndrome. Any other
processor in a multiprocessor system will
thus get an error if it touches the data.
The sourcing processor also takes a trap
when the copy-back error is detected to
fulfill the next guideline, below.

• Identify the source of the error. To minimize
downtime of large multiprocessor systems,
the failing replaceable unit must be cor-
rectly identified so that a field technician
can quickly swap it out. This requires the
error’s source to be correctly identified.

• Detect errors as soon as possible. If errors are
not quickly detected, identifying the error’s
true source can become difficult at best.

Major architectural units
The processor’s microarchitecture design

has six major functional units that perform
relatively independently. The units commu-
nicate requests and results among themselves
through well-defined interface protocols, as
Figure 2 shows.

Instruction issue unit
This unit feeds the execution pipelines with

instructions. It independently predicts the
control flow through a program and fetches
the predicted path from the memory system.
Fetched instructions are staged in a queue
before forwarding to the two execution units:
integer and floating point. The IIU includes
a 32-Kbyte, four-way associative instruction
cache, the instruction address translation
buffer, and a 16 K-entry branch predictor.

Integer execute unit
This unit executes all integer data type

instructions: loads, stores, arithmetics, logi-
cals, shifts, and branches. Four independent
data paths enable up to four integer instruc-
tions to be executed per cycle. The allowable
per-cycle integer instruction mix is as follows:

• 2 from (arithmetic, logical, shift), A0/A1
pipelines

• 1 from (load, store), MS pipeline
• 1 from (branch), BR pipeline

75MAY–JUNE 1999

The load/store pipeline also
executes floating-point data
type memory instructions. A
second floating-point data
type load instruction can be
issued to either of the A0 or
A1 pipelines. We describe
this instruction in more detail
in the prefetch cache discus-
sion, later as part of the on-
chip memory section.

Data cache unit (on-chip
memory system)

The data cache unit com-
prises the level-one (L1) on-
chip cache memories and the
data address translation

76

ULTRASPARC-III

IEEE MICRO

L1 Data
L1 Prefetch
L1 Write
L2 External

2 cycles
3 cycles
1 cycle
12 cycles

 9.6 Gbytes/s
18.4 Gbytes/s
13.6 Gbytes/s
 6.4 Gbytes/s

Memory store
load data pipe

A0/AI integer
execution pipe

L1 data cache

Prefetch cache

Store queue

Memory store
pipe address

A0/AI integer
execution

pipe address

Write
cache

64 64 64

258

Off-chip

L2
cache

Cache Latency Bandwidth

Figure 3. Data cache unit block diagram.

Instruction issue unit (IIU)

Floating-point unit (FPU)

Data cache unit (DCU)

External memory unit (EMU)

External cache
SRAM

Local memory

SDRAM

FP multiply

FP add/subtract

FP divide
Graphics unit

Instruction cache

Instruction queue

Steering logic

4 instructions

Data
cache

Prefetch
cache

Write
cache

Store
queue

SDRAM
controller

External
cache
tags

SRAM
controller

288

Integer execution unit (IEU)

Dependency/trap logic

ALU pipes (0 and 1)

Load/store/special pipe

System interface unit (SIU)

Snoop pipe
controller

Data switch
controller

System
interconnect

144

Floating-
point

register
file

(FPRF)

Working
and

architectural
register file

(WARF)

Figure 2. Communication paths between the UltraSPARC-III’s six major functional units.

buffer, as Figure 3 shows. There are three first-
level, on-chip data caches: data—64-Kbyte,
four-way associative, 32-byte line; prefetch—
2-Kbyte, four-way associative, 64-byte line;
and write—2-Kbyte, four-way associative, 64-
byte line.

Floating-point unit
This unit contains the data paths and con-

trol logic to execute all floating-point and par-
titioned fixed-point data type instructions.
Three data paths concurrently execute float-
ing-point or graphic (partitioned fixed-point)
instructions, one each per cycle from the fol-
lowing classes:

• Divide/multiply (single or double preci-
sion or partitioned),

• Add/subtract/compare (single or double
precision or partitioned), and

• An independent division data path,
which lets a nonpipelined divide proceed
concurrently with the fully pipelined
multiply and add data paths.

External memory unit
This unit controls the two off-chip memo-

ry structures: the level-two (L2) data cache built
with off-chip synchronous RAMs (SRAMs),
and the main memory system built with off-
chip synchronous DRAMs (SDRAMs).

The L2 cache controller includes a 90-Kbyte
on-chip tag RAM to support L2 cache sizes up
to 8 Mbytes. The main memory controller can
support up to four banks of SDRAM memo-
ry totaling 4Gbytes of storage.

System interface unit
This unit handles external communication

to other processors, memory systems, and I/O
devices. The unit can handle up to 15 out-
standing transactions to external devices, with
support for full out-of-order data delivery on
each transaction.

Instruction pipeline
To meet our clock rate and performance

goals, we concluded that we needed a deep
pipeline. The UltraSPARC-III 14-stage
pipeline, as Figure 4 shows, has more stages

77MAY–JUNE 1999

k

Decode

S
co

re
bo

ar
d

de
pe

nd
en

cy

S
te

er
in

g

Queue

Instruction
decode

Instruction
predecode

Instruction
translation

buffer

Branch
predictor

(16K
entry)

Branch
 target add

W

A
R
F

W

A

R

F

A0
arith log

shift

A1
arith log

shift

Data cache
(64-Kbyte, 4-way)

Prefetch cache
(2-Kbyte, 4-way)

Data translation
buffer

Store queue

ASU

FP
register

file

Bypass
network

Instruction
cache

(32-Kbyte,
4-way,

32-byte line)

A
dd

re
ss

ge
ne

ra
tio

n

In
st

ru
ct

io
n

pr
ef

et
ch

In
st

ru
ct

io
n

fe
tc

h

B
ra

nc
h

ta
rg

et
ca

lc
ul

at
io

n

In
st

ru
ct

io
n

de
co

de

R
eg

is
te

r
fil

e
re

ad

In
te

ge
r

ex
ec

ut
e

D
at

a
ca

ch
e

ac
ce

ss

M
em

or
y

by
pa

ss

P
ip

e
ex

te
nd

Tr
ap

D
on

e

W
or

ki
ng

re
gi

st
er

fil
e

w
rit

e

In
st

ru
ct

io
n

st
ee

r

Instruction
issue logic

M
ux

Branch pipeline

Write
cache

(2-Kbyte,
4-way)

Branch pipe

Memory
store pipe

A0 integer
execution pipe

A1 integer
execution pipe

Floating-point
divide/square root

Floating-point/
graphics multiplier

Floating-point/
graphics adder

integer multiply
divide

A P F B I J R E C M W X T D

WARF

FP
ASU

Working and
architectural register file
Floating point
Arithmetic special unit

Figure 4. The UltraSPARC-III microprocessor instruction pipeline.

than any previous UltraSPARC pipeline. The
extra pipeline stages must be added in pipeline
paths that are infrequently used—for exam-
ple, trap generation.

Each pipeline stage performs part of the work
necessary to execute an instruction, as the box,
“How pipeline stages work in the UltraSPARC-
III,” explains. The instruction issue unit occu-
pies the A through J stages of the pipeline, and
the integer execution unit accounts for the R
through D stages. The data cache unit occupies
the E, C, M, and W stages of the pipe in paral-
lel with integer execution unit stages. The float-
ing-point unit is shown as a side pipeline that
parallels the E through D stages of the integer
pipeline. The other units of the machine (sys-
tem interface unit and external memory unit)
have internal pipelines but are not considered
part of the core processor pipe.

We determined the processor’s pipeline
depth early in the design process by analyzing
several basic paths. We selected the integer
execution path to determine the machine
cycle time so we would have minimum laten-
cy for the basic integer operation. Using an

aggressive dynamic adder for this stage result-
ed in our setting the number of logic gate lev-
els per stage to approximately eight—the exact
number depends on circuit style.

Early analysis also showed that with eight
gate delays (using a three-input NAND with
a fan-out of three as a gate delay) per stage,
the overhead due to synchronous clocking
(from flip-flop delay, clock skew, jitter, and so
on) would consume about 30% of the cycle.
If we tried to pipeline the integer execution
over two cycles (commonly called super-
pipelining), the second 30% clocking over-
head would significantly increase latency. As
a result, performance would decline in some
applications. The on-chip cache memories are
pipelined across two stages, but they don’t suf-
fer the additional clock overhead because we
used a wave-pipeline circuit design.

Another known critical path from previous
SPARC designs is the global pipe stall signal.
This signal freezes the flip-flops when an
unexpected event, such as a data cache miss,
occurs. This freeze signal is dominated by wire
delay that we knew would have technology
scaling problems, so we decided to complete-
ly eliminate it by using a nonstalling pipeline.
Since the pipeline state couldn’t be frozen, we
had to use a repair mechanism that could
restore the state when an unexpected event
occurs. It’s handled like a trap: The pipeline is
allowed to drain, and its state is restored by
refetching instructions that were in the
pipeline, starting at the A stage.

One concern with a deep pipeline is the cost
of branch misprediction. When a branch is mis-
predicted, instructions must be refetched start-
ing at the A stage. This incurs a penalty of eight
cycles (A through E stages). With recent
improvements in branch prediction, a processor
incurs this penalty much less frequently, allow-
ing the pipeline to be longer with only a small
performance cost. In addition, we designed a
small amount of alternate path buffering in the
I stage (the miss queue). If a predicted taken
branch thus mispredicts (actually not taken), a
few instructions are immediately available to
start in the I stage. This effectively halves the
branch misprediction penalty.

Pipeline stages after the M stage impact per-
formance whenever the pipeline must be
drained. We overlapped the new fetch (for a
trap target or a refetch) with the back of the

78

ULTRASPARC-III

IEEE MICRO

How pipeline stages work in the UltraSPARC-III
Stage Function

A Generate instruction fetch addresses, generate predecoded instruction bits on
cache fill

P Fetch first cycle of instructions from cache; access first cycle of branch predic-
tion

F Fetch second cycle of instructions from cache; access second cycle of branch pre-
diction; translate virtual-to-physical address

B Calculate branch target addresses; decode first cycle of instructions
I Decode second cycle of instructions; enqueue instructions into the queue
J Steer instructions to execution units
R Read integer register file operands; check operand dependencies
E Execute integers for arithmetic, logical, and shift instructions; read, and check

dependency of, first cycle of data cache access floating-point register file
C Access second cycle of data cache, and forward load data for word and double-

word loads; execute first cycle of floating-point instructions
M Load data alignment for half-word and byte loads; execute second cycle of float-

ing-point instructions
W Write speculative integer register file; execute third cycle of floating-point instruc-

tions
X Extend integer pipeline for precise floating-point traps; execute fourth cycle of

floating-point instructions
T Report traps
D Write architectural register file

pipeline draining. By doing so, we could add
stages to the back of the pipe, as long as we
could guarantee that the pipe results were
drained before new instructions reached the
R stage. To ease the implementation of pre-
cise exceptions, we added back-end pipe stages
up to this limit.

We pushed back the floating-point execu-
tion pipeline by one cycle relative to the inte-
ger execution pipe. This allows extra time to
the floating-point unit for wire delays. We had
to keep the machine’s latency-sensitive inte-
ger part physically small to minimize wire
delays. Moving the floating-point unit away
from the integer core was a major step toward
achieving this goal.

Instruction issue unit
Experience with previous UltraSPARC

pipelines showed our design teams that many
critical-timing paths occurred in the instruc-
tion issue unit. Consequently, we knew we
had to pay particular attention to designing
this part of the processor. Our decision to keep
UltraSPARC-III a static speculation machine
compatible with the previous pipelines paid
off in the IIU design. Dynamic speculation
machines require very high fetch bandwidths
to fill an instruction window and find instruc-
tion-level parallelism. In a static speculation
machine, the compiler can make the specu-
lated path sequential, resulting in fewer
requirements on the instruction fetch unit.
We used this static speculation advantage to
simplify the fetch unit and minimize the num-
ber of critical timing paths. Figure 5 illustrates
the IIU’s different blocks.

The pipeline’s A stage corresponds to the
address lines entering the instruction cache.
All fetch address generation and selection
occurs in this pipe stage. Also at the A stage,
a small, 32-byte buffer supports sequential
prefetching into the instruction cache. When
the instruction cache misses, the cache line
requires 32 bytes. But instead of requesting
only the 32 bytes needed for the cache, the
processor issues a 64-byte request. The first
32 bytes fill the cache line; the second 32 bytes
are stored in the buffer. The buffer can then
be used to fill the cache if the next sequential
cache line also misses.

We distributed the instruction cache access
over two cycles (P and F pipeline stages) by

using a wave-pipelined SRAM design. In this
design, the cache is pipelined without the use
of latches or flip-flops. Careful circuit design
ensures that the data waves in each cycle do not
overtake each other.3 In parallel with the cache
access, this design also allows branch predictor
and instruction address translation buffer
access. By the time the instructions are avail-
able from the cache in the B stage, we also have
the physical address from the translator and a
prediction for any branch that was fetched. The
processor uses all this information in the B stage
to determine whether to follow a sequential-
or taken-branch path. The processor also deter-
mines whether the instruction cache access was
a hit or a miss. If the processor predicts a taken
branch in the B stage, the processor sends back
the target address for that branch to the A stage
to redirect the fetch stream.

Waiting until the B stage to redirect the
fetch stream lets us use a large, accurate branch
predictor. We minimized the wait penalty for
branch targets through compiler static spec-
ulation and the instruction buffering queues.

The branch predictor uses a Gshare algo-
rithm4 with 16K 2-bit saturating up/down
counters. Since the predictor is large, it need-
ed to be pipelined across two stages. In the
original Gshare scheme, this would require
the predictor to be indexed with an old or
inaccurate copy of the program counter (PC).

We modified the scheme by offsetting the
history bits such that the three low-order index
bits into the predictor use PC information
only. Each time the predictor is accessed, eight
counters are read out. Later, one of them is

79MAY–JUNE 1999

Instruction
translation

look-aside buffer

32-Kbyte
instruction cache

Branch
predictor

Return
address stack

Miss
queue

Instruction
queue

4

4

+

M
ux

M
ux

Figure 5. Instruction issue unit (IIU) block diagram.

selected (using the three low-order PC bits) in
the pipeline’s B stage after the exact position
of the first branch in the fetch group is known.

Simulations showed that not XORing the
global-history bits with the low-order PC bits
does not affect the branch predictor perfor-
mance. The three-cycle loop through the A, P,
and F stages for taken branches lets us keep
the global-history register at the predictor’s
input in an exact state. The register is exact
because there can only be one taken branch
every three cycles.

We designed two instruction buffering
queues into the UltraSPARC-III: the instruc-
tion queue and the miss queue. The 20-entry
instruction queue decouples the fetch unit
from the execution units, allowing each to pro-
ceed at its own rate. The fetch unit is allowed
to work ahead, predicting the execution path
and stuffing instructions into the instruction
queue until it’s full. When the fetch unit
encounters a taken branch delay, we lose two
fetch cycles to fill the instruction queue. Our
simulations show, however, that there are usu-
ally enough instructions already buffered in
the instruction queue to occupy the execution
units. This two-cycle delay also gives us the
opportunity to buffer the sequential instruc-
tions that have already been accessed into the
four-entry miss queue. If we then find that we
mispredicted the taken branch, the instruc-
tions from the miss queue are immediately
available to send to the execution units.

The last two stages of the instruction issue
unit decode the instruction type and steer each
instruction to the appropriate execution unit.
These two functions must be done in separate
pipeline stages to achieve the cycle time goal.

Integer execute unit
We guarantee the minimum logical latency

for the most frequent instructions by setting
the processor cycle time with the integer exe-
cute stage. However, the amount of work we
try to fit in one execute stage cycle varies over
a wide range. We used several techniques to
minimize the cycle time of the E stage. We
applied the most aggressive circuit techniques
available to design the E stage—the entire inte-
ger data path uses dynamic precharge circuits.
We had to carefully design the physical data
path to minimize wiring lengths; wire delay
causes more than 25% of the delay in this stage.

This level of design cannot be applied to
the entire processor. It was vital that the
microarchitecture clearly showed where this
sort of design investment would pay off in
performance.

We extended the future file method to help
achieve a short cycle time.5 The working and
architectural register file (WARF) let us remove
the result bypass buses from most of the inte-
ger execution pipeline stages. Without bypass
buses, we could shorten the integer data path
and narrow the bypass multiplexing. Both con-
tribute to a short cycle time.

The WARF can be regarded as two separate
register files. The processor accesses the work-
ing register file in the pipeline’s R stage and
supplies integer operands to the execution
unit. The file is also written with integer
results as soon as they become available from
the execution pipeline. Most integer opera-
tions complete in one cycle, with results
immediately written into the working regis-
ter file in the pipeline’s C stage. If an excep-
tional event occurs, the immediately written
results must be undone. Undoing results is
accomplished with a broadside copy of all
integer registers from the architectural regis-
ter file back into the working register file. By
placing the architectural register file at the end
of the pipe, we can ensure that we do not com-
mit results into it until we have resolved all
exceptional conditions. Copying the archi-
tectural register file back into the working reg-
ister file gives us a simple, fast way to repair
the pipeline state when exceptions do occur.

The state copying of the WARF also offers
a simple mechanism to implement the
SPARC architecture register windows. The
architectural register file contains a full eight
windows’ worth of integer registers. A broad-
side copy into the working register file of the
new window is made when a window must be
changed.

We moved the data path for the least fre-
quently executed integer instructions to a sep-
arate location to further unburden the core
integer execution pipeline from extra wiring.
Nonpipelined instructions such as integer
divide are executed in this data path, which is
called the arithmetic/special unit (ASU). The
ASU was decoupled from impacting the
machine cycle time by dedicating a full cycle
each way to get operands to and from this unit.

80

ULTRASPARC-III

IEEE MICRO

On-chip memory system
The performance influence

of the memory system
becomes increasingly domi-
nant as processor performance
and clock rates increase. For
this reason, the on-chip mem-
ory system was crucial to our
delivering UltraSPARC-III’s
performance and scalability
goals. In designing the on-
chip memory system, we followed this princi-
ple: Achieve uniform performance scaling by
scaling both bandwidth and latency. A popu-
lar architectural trend is to try to hide the
memory latency scaling problem by using pro-
gram ILP. Not surprisingly, the hiding is not
free: Programs with low ILP suffer a perfor-
mance hit, and ILP that could have been used
to speed up the program execution was wast-
ed on “hiding” the lagging memory system.
Table 3 summarizes the UltraSPARC-III on-
chip memory system.

The key to scaling memory latency in the
UltraSPARC-III is the first-level, sum-
addressed memory data cache.6 Fusing the
memory address adder with the word line
decoder for the data cache largely eliminates
the address adder’s latency. This enabled us to
increase the data cache size to completely occu-
py the time available in two processor cycles.
The combination of an increased cache size

with a scaled clock rate while maintaining a
two-cycle access gives us a linear memory
latency improvement. We can demonstrate
this linear improvement with the following cal-
culation of overall memory latency:

average latency = L1 hit time + L1 miss rate * L1
miss time + L2 miss rate * L2 miss time

Table 4 shows latency trade-offs, which we
achieved with some representative values from
simulations of the SPEC integer benchmarks
to compare the UltraSPARC-II and Ultra-
SPARC-III.

Comparing the 300-MHz UltraSPARC-II
with the 600-MHz UltraSPARC-III shows
that we were able to scale the average memo-
ry latency by more than the clock ratio. We
achieved this result through the use of the
sum-addressed memory (SAM) cache and
improvements in the L2 cache and memory

81MAY–JUNE 1999

Table 3. UltraSPARC-III’s on-chip memory system parameters.

Cache Size (Kbytes) Associativity Line length (bytes) Protocol

Instruction 32 4-way, microtag 32 Store coherent
pseudorandom

Data 64 4-way, microtag 32 Write-through
pseudorandom

Write 2 4-way, LRU 64 Write-validate
Prefetch 2 4-way, LRU 64 Store coherent

Table 4. Memory latency trade-offs. US-II is the UltraSPARC-II; US-III is the UltraSPARC-III. SAM is sum-

addressed memory. All L2 caches are 4-Mbyte, direct-mapped.

L1 miss L-2 miss

rate rate Average

L1 cache Load use (fraction L1 miss (fraction memory

L1 data latency penalty per load rate cost per load L2 miss latency

Clock cache (cycles) (cycles) instruction) (ns) instruction) cost (ns) (ns)

US-II
300 MHz 16-Kbyte, 1-way 2 1 0.10 30 0.01 150 11.16
600 MHz 16-Kbyte, 1-way 2 1 0.10 20 0.01 100 6.33
600 MHz 64-Kbyte, 4-way 3 2 0.04 20 0.01 100 6.80
US-III
600 MHz 64-Kbyte, 4-way, SAM 2 1 0.04 20 0.01 100 5.13

[estimated
for design
purposes]

latencies.6 The alternative UltraSPARC-III
approaches could not keep up with the clock
rate scaling even with L2 cache and memory
latency reductions.

The SAM cache works well for programs
having reasonable cache hit rates, but we want-
ed the performance of all programs to scale. For
programs dominated by main memory laten-
cy, we use two techniques: a prefetch cache that
is accessed in parallel with the L1 data cache,
and a low-latency, on-chip memory controller
(described later). Analysis showed that many
programs dominated by main memory laten-
cy shared a common characteristic: the ability
to prefetch the memory data well before it’s
needed by the execution units.

By issuing up to eight in-flight prefetches
to main memory, the prefetch cache enables a
program to utilize 100% of the available main
memory bandwidth without incurring a slow-
down due to the main memory latency. The
prefetch cache is a 2-Kbyte SRAM organized
as 32 entries of 64 bytes and using four-way
associativity with an LRU replacement policy.
A multiport SRAM design let us achieve a
very high throughput. Data can be streamed
through the prefetch cache in a manner sim-
ilar to stream buffers.7,8 On every cycle, each
of two independent read ports supply 8 bytes
of data to the pipeline while a third write port
fills the cache with 16 bytes.

Other microprocessors, such as the Ultra-
SPARC-II, implement prefetch instructions.
Our simulations, however, show that prefetch-
ing’s full benefit is not realized without the
high-bandwidth streaming afforded by the
three ports of the prefetch cache. We also
included an autonomous stride prefetch
engine that tracks the program counters of
load instructions and detects when a load
instruction is striding through memory.
When the prefetch engine detects a striding
load, the prefetch engine issues a hardware
prefetch independent of any software
prefetch. This allows the prefetch cache to be
effective even on codes that do not include
prefetch instructions.

Our next challenge was to scale the on-chip
memory bandwidths. We solved this largely
by using two techniques: wave-pipelined
SRAM designs for the on-chip caches, and a
write cache for store traffic. Wave-pipelining
of the caches let us decouple the on-chip

memory bandwidth from the latency and
independently optimize each characteristic.

Write-caching is an excellent way to reduce
the bandwidth due to store traffic.9 In the
UltraSPARC-III we use a write cache to reduce
the store traffic bandwidth to the off-chip L2
data cache. The write cache provides other
benefits: By being the sole source of on-chip
dirty data, the write cache easily handles both
multiprocessor and on-chip cache consisten-
cy. Error recovery also becomes easier with the
write cache, since the write cache keeps all
other on-chip caches clean and simply invali-
dates them when an error is detected.

Sharing a 2-Kbyte SRAM design with the
prefetch cache conserved our design effort.
Also, it was practical: Simulations showed that
the write-back bandwidth of the write cache
was relatively insensitive to its size once it was
larger than 512 bytes. The bandwidth reduc-
tion at 2 Kbytes was equivalent to the store
traffic from a write-back, 64-Kbyte, four-way
associative data cache. Over 90% of the time
the write cache can merge a store into an exist-
ing dirty write-cache line.

We use a byte validate policy on the write
cache. Rather than reading the data from the
L2 cache for the bytes within the line that are
not being overwritten, we just keep an individ-
ual valid bit for each byte. Not performing the
read-on-allocate saves considerable L2 cache
bandwidth by postponing a read-modify-write
until the write cache evicts a line. Frequently,
by eviction time the entire line has been written
so the write cache can eliminate the read. We
included the write cache in the L2 data cache,
and write-cache data can supersede read data
from the L2 data cache. We handle this by a
byte-merging multiplexer on the incoming L2
cache data bus that can choose either write-
cache data or L2 cache data for each byte.

The last benefit of the write cache is in
implementing the V9 memory ordering rules.
The V9 architecture specifies a memory total
store ordering that simplifies the writing of
high-performance multiprocessor programs.
This model requires that store operations be
made visible to all other processors in a mul-
tiprocessor system in the original program
order. The write cache provides the point of
global store visibility in UltraSPARC-III sys-
tems. Generally, keeping the requirements of
stores (bandwidth, error correction, ordering,

82

ULTRASPARC-III

IEEE MICRO

consistency) in a separate cache lets us inde-
pendently optimize both parts of the on-chip
memory system.

Floating-point unit
To meet the cycle time goals for the Ultra-

SPARC-III, we made a concession to latency
scaling in the floating-point execution units.
Early circuit analysis showed that by using
advanced dynamic circuit design, we need add
only one additional latency cycle to the float-
ing-point add and multiply units. For numer-
ical floating-point programs, the impact of
additional execution latency concerned us less.
We were less concerned because previous
UltraSPARC generations encouraged unrolled
loops to be scheduled for the L2 cache laten-
cy, which was eight cycles. Since the previous
pipelines had modulo scheduled loops at a
multiple of our new latencies, the code sched-
ules would be compatible.

We scaled the floating-point divide latency
(in absolute nanoseconds) by using a multi-
plicative iteration algorithm. Table 5 summa-
rizes the characteristics of the UltraSPARC-III
floating-point execution units and compares
them to the UltraSPARC-II latencies.

External memory and system bus interface
The UltraSPARC-III external memory sys-

tem includes a large L2 data cache and the
main memory system. Integrating, on chip,
the control of both these external memory sys-
tems was essential in achieving our perfor-
mance, scalability, and reliability goals.

We built the L2 data cache with eight indus-
try-standard, register-to-register, pipelined sta-
tic memory chips cycling at one-third of the
processor clock rate. The cache controller
allows programmable support of 4 or 8 Mbytes
of L2 cache. The L2 cache controller accesses
off-chip L2 cache SRAMs with a 12-cycle
latency to supply a 32-byte cache line to the
L1 caches. A 256-bit-wide data bus between
the off-chip SRAMs and the microprocessor
delivers the full 32 bytes of data needed for an
L1 miss in a single SRAM cycle. By placing
the tags for the L2 cache on chip, we reduced
the latency to main memory with early detec-
tion of L2 misses. On-chip tags also enable
derivative future designs to build associative
L2 caches without a latency penalty. The L2
cache controller accesses on-chip tags in par-

allel with the start of the off-chip SRAM access
and can provide a way-select signal to a late-
select address pin on the off-chip data SRAMs.

Dedicating every other cycle of the on-chip
L2 cache tags to coherency snoops from other
processors provides excellent coherency band-
width, since the tag SRAM is wave-pipelined
at the full 600-MHz target clock rate.

Moving the main memory DRAM con-
troller on chip reduces memory latency, com-
pared to the previous generation, and scales
memory bandwidth with the number of
processors. The memory controller supports
up to 4 Gbytes of SDRAM memory organized
as four independent banks. In a multiproces-
sor system, the SDRAM banks can be inter-
leaved across the per-processor memory
controllers. By sizing the SDRAM data bus to
be the same as the coherency unit (512 bits),
we can minimize the latency to complete a data
transfer from memory. This can have a signif-
icant performance effect since misses from
large caches tend to cluster, and contention for
the memory bus from adjacent misses can
impact performance. The memory controller
has a peak 3.2-Gbyte/sec transfer rate.

We maximized the bandwidth of the
processor interface to the system bus by allow-
ing up to 15 outstanding bus transactions
from each processor. The outstanding trans-
actions can complete out of order with respect
to the original request order. This enables the
memory banks in a multiprocessor system to
service requests as soon as a bank is available.
The processor’s bus interface takes care of re-
ordering the data delivery to the pipeline to
meet the requirements of the SPARC V9
memory programming model.

The system bus interface architecture was
key to meeting the reliability goals we have stat-
ed. All processor interfaces use error detection

83MAY–JUNE 1999

Table 5. UltraSPARC-III (US-III) floating-point units compared

to UltraSPARC-II (US-II) latencies.

600-MHz 300-MHz

US-III latency US-III US-II latency

Operation (cycles, ns) issue rate (cycles, ns)

Add/subtract 4, 6.66 1 per cycle 3, 9.99
Multiply 4, 6.66 1 per cycle 3, 9.99
Divide 20, 33.4 1 per 17 cycles 22, 72.6
Square root 24, 40.0 1 per 21 cycles 23, 76.0

and/or correction codes to detect errors as soon
as possible. The processor performs error detec-
tion on every external chip-to-chip hop to cor-
rectly isolate any fault to its source. We also
designed an 8-bit-wide “back-door” bus that
runs independently from the main system bus.
If the system bus has an error, each processor
can boot up and run diagnostic programs over
the back-door bus to diagnose the problem.

To enable the scaling of multiprocessor sys-
tems based on UltraSPARC-III up to 1,000
processors, we included support for in-mem-
ory coherency directories on chip. Checking
ECC over a 144-bit memory word instead of
72 bits freed up 7 bits of each 144-bit mem-
ory word for use by the in-memory directory.
The processor must examine the directory
state only on each memory access to see if an
external agent is required to intervene to com-
plete the memory access. Placing the direct-
ory in main memory allows it to automatically
expand as memory is added to the system.

Physical design
Physical design grows more challenging

with each new processor generation. As the
logic complexity grows, circuit counts and
related interconnection increases. With inter-
connections becoming increasingly dominant
in design, the block designs must buffer their
inputs and outputs, very much like I/O cells
for ASIC designs but without the level trans-
lation. As clock rates rise faster than available
speed increases in base CMOS technology,
increasing individual gate complexity with-

out increasing gate delay becomes more
urgent. With clock rates, gate count, and total
wiring increasing, chip power increases, forc-
ing additional changes in thermal manage-
ment and electrical distribution schemes. A
chip plot outlining the major functional units
is shown in Figure 6.

The UltraSPARC-III is flip-chip (solder
bump) attached to a multilayered ceramic
land grid array package having 750 I/O sig-
nals and 450 power bumps. The package has
a new cap to mate with an air-cooled heat sink
containing a heat pipe structure to control the
die temperature. A continuous double grid
system on metal layers 5 and 6 provides all
this power. This paired grid reduces the power
supply loop inductance on the die and pro-
vides return current paths for long signal
wiring. The grid elements in the sixth metal
layer are strapped with what amount to bus
bars on metal layer 7. This evens out the
power supply resistance drops that would oth-
erwise be seen by the blocks.

The heavy-duty grid concept extends to
clock distribution as well. A single distributed
clock tree contains a completely shielded grid
to reduce both jitter-inducing injected noise
and global skew. Each block also has its own
shorted, shielded, and buffered clock, further
reducing the blocks’ local skews.

The circuit methodology we employed is
primarily fully static CMOS to simplify the
verification requirements for much of the
design. Only where speed requirements dic-
tate higher performance did we use dynamic,
or domino, designs. Also for verification ease,
we placed the dynamic signals only within
fully shielded custom cells. To improve the
speed enhancement obtained with the dynam-
ic circuits without further increasing their
power, we used an overlapping, multiphased,
nonblocking clock scheme, similar to that
described by Klass.10

With clock rates continuing to increase, the
part of the cycle time allocated to flip-flops
comes under great pressure. To improve this,
we designed a new edge-triggered flip-flop.11

This partially static output, dynamic input
flip-flop does not require setup time and is one
of the lowest D-to-Q delays for the power and
area in use today. The flip-flop design’s dynam-
ic input stage effectively allows us to tuck in a
full logic stage without increasing the D-to-Q

84

ULTRASPARC-III

IEEE MICRO

IIU Instruction issue unit
IEU Instruction execute unit
FGU Floating-point unit
DCU Data cache unit
SIU System interface unit

Figure 6. The UltraSPARC-III’s major functional units.

delay. The noise immunity increases by an
input shutoff mechanism that reduces the
effective sample time, allowing the design to
be used as though it were fully static.

To improve our ability to wire the proces-
sor globally, we used an area-based router. This
enabled reuse of any block area not needed in
the design’s lower level for additional top-level
wiring. Cost functions for global routing based
on noise and timing analysis let us define a spe-
cific wire group’s width and spacing. Similar-
ly, signal routing within the blocks lets us
improve timing and noise margins. MICRO

The UltraSPARC-III is the newest gener-
ation of 64-bit SPARC processors to be

used in a wide range of Sun systems. The chip
will go into production in the fourth quarter
of 1999. The architecture enables multi-
processor systems with more than 1,000
processors to be easily built and still achieve
excellent performance. Starting at 600-MHz
target clock rates, we plan to extend the Ultra-
SPARC-III architecture to achieve clock rates
in excess of 1 GHz with UltraSPARC-IV.

References
1. D. Weaver and T. Germond, The SPARC

Architecture Manual, Version 9, Prentice
Hall, Englewood Cliffs, N.J., 1994.

2. N. Wilhelm, “Why Wire Delays Will No
Longer Scale for VLSI Chips,” Tech. Report
TR-95-44, Sun Laboratories, Mountain View,
Calif., 1995.

3. K.J. Nowka and M.J. Flynn, Wave Pipelining
of High-Performance CMOS Static RAM,
Tech. Report CSL-TR-94-615, Stanford
University, Stanford, Calif., 1994.

4. S.-T. Pan, K. So, and J. Rameh, “Improving
Branch Prediction Accuracy using Branch
Correlation,” Proc. Fifth Conf. Architectural
Support for Programming Languages and
Operating Systems, ACM Press, New York,
1992, pp. 76–84.

5. J.E. Smith and J.E. Pleszkun, “Implementa-
tion of Precise Interrupts in Pipelined Proces-
sors,” Proc. 12th Ann. Int’l Symp. Computer
Architecture, ACM Press, p. 36–44.

6. R. Heald et al., “64-KByte Sum-Addressed-
Memory Cache with 1.6-ns Cycle and 2.6ns
Latency,” IEEE J. Solid-State Circuits, Nov.
1998, pp. 1,682–1,689.

7. N. Jouppi, “Improving Direct-Mapped Cache
Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers,”
Proc. 17th Ann. Int’l Symp. Computer
Architecture, IEEE Computer Soc. Press,
Los Alamitos, Calif., 1990, pp. 364–373.

8. J.-L. Baer and T.-F. Chen, “An Effective On-
Chip Preloading Scheme to Reduce Data
Access Penalty,” Proc. Supercomputing 91,
IEEE Computer Soc. Press, 1991, pp.
176–186.

9. N. Jouppi, “Cache Write Policies and
Performance,” Proc. 20th Ann. Int’l Symp.
Computer Architecture, ACM Press, 1992,
pp. 191–201.

10. F. Klass, “A Non-Blocking Multiple-Phase
Clocking Scheme for Dynamic Logic,” IEEE
Int’l Workshop on Clock Distribution
Networks Design, Synthesis, and Analysis,
IEEE Press, Piscataway, N.J., 1997.

11. F. Klass, “Semi-dynamic and Dynamic Flip-
flops with Embedded Logic,” Digest of
Tech. Papers, 1998 Symp. VLSI Circuits,
IEEE Press, 1998, pp. 108–109.

Tim Horel is Megacell group manager for the
UltraSPARC-III development team at Sun
Microsystems Inc. He previously held product
development and engineering positions at
AMCC and IBM. Horel has a BSEE from the
State University of New York at Buffalo.

Gary Lauterbach is a distinguished engineer
at Sun Microsystems Inc. and chief architect
of the UltraSPARC-III. In addition to micro-
processor design, he has worked on operating
system design, CAE tools, process control sys-
tems and microwave communication systems.
He has a BSEE from the New Jersey Institute
of Technology. Lauterbach is a past member
of the ACM and the IEEE.

Contact the authors about this article at
Sun Microsystems Inc., {tim.horel, gary.
lauterbach}@eng.sun.com.

You may find information concerning Ultra-
SPARC-III’s comparison to its major competi-
tors in an interview with author Gary
Lauterbach in the June 1999 issue of Comput-
er magazine in the Computing Practices section.

85MAY–JUNE 1999

