
The Design of the Microarchitecture
of UltraSPARCTM-I
MARC TREMBLAY, MEMBER, IEEE, DALE GREENLEY, AND KEVIN NORMOYLE

Invited Paper

The realization of a high pe@ormance modem microprocessor
involves hundreds of person-years of conception, logic design, cir-
cuit design, layout drawing, etc. In order to leverage effectively the
5-10 millions of transistors available, careful microarchitecture
tradeoff analysis must be pe@ormed. This paper describes not only
the microarchitecture of UltraSPARC-I, a 167 MHz 64-b four-
way superscalar processor, but more importantly it presents the
analysis and tradeoffs that were made “en route” to the$nal chip.
Among several issues, the in-order execution model is compared
with alternatives, variations of the issue-width of the machine
as well as the number of functional units are described, subtle
features that are part of the memory hierarchy are explained, and
the advantages of the packet-switched interconnect are exposed.

I. INTRODUCTION

A. Overview of UltraSPARC-1
UltraSPARC-I is a highly integrated 64-b, four-way su-

perscalar processor targeted at running real life applications
2.5-5x faster than the previous SPARC processors. To
achieve this goal, several processor architectures, as well
as a plethora of microarchitecture features, were investi-
gated. This paper describes why we settled on the current
architecture implementation.

In order to quantify why we should use a certain ex-
ecution model, or a certain branch prediction scheme,
or a certain mix of functional units, etc., we wrote an
accurate performance simulator with tunable parameters
so that many variations could be simulated [l]. A novel
sampling methodology [2] was used to speed up simulations
so that turnaround time for simulating a set of about 30
applications (including SPEC92) on a new machine model
would take only a few hours. No less important, the impact
of the features on cycle time was evaluated through circuit
simulation (Spice) of the main paths affected.

The block diagram in Fig. 1, shows a high level represen-
tation of the microarchitecture of UltraSPARC-I. The front-
end of the machine responsible for prefetching, decoding,

Manuscript received August 2, 1995; revised August 24, 1995.
The authors are with SPARC Technology Business, Sun Microsystems

IEEE Log Number 9415192.
Inc, Mountain View, CA 94043 USA.

...

!
Prefetch an!

Cache Dlspatch Un t

DCache
Buffer

Second-Lev system antertaw I Cache Interface1

1

1

Fig. 1. UltraSPARC-I block diagram.

and dispatching instructions (stages F, D, and G in Fig. 2)
as well as predicting branches and their target, is capable
of sending four instructions per cycle to the nine functional
units even in the presence of conditional branches. Section
IV describes how we achieved this and describes some
of the alternatives that were considered. The core of the
machine consists of nine functional units. In Fig. 1 we show
how many instructions can be dispatched to these units
every cycle. For instance, two instructions (two arrows)
can be sent to the floating-point and graphics block (which
contains five distinct functional units). All functional units
are fully pipelined except for the floating-point divide and
square root unit. Instructions are dispatched in order but
long latency instructions (e.g., FP dividehquare root, load
misses, etc.) are allowed to complete out-of-order with
respect to other classes of instructions, so that their latency
can be hidden.

The backend of the processor is composed of the load
buffer, the store buffer, the data cache (also referred to as
the first level cache), the Data Memory Management Unit
(DMMU), and the second-level cache (also referred to as
external cache) controller. These units combine to provide

0018-9219/95$04.00 0 1995 IEEE

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 12, DECEMBER 1995 1653

fnteger Pipe

Floating-pointrGrap hics Pipe
Fig. 2. UltraSPARC-I pipeline.

the necessary data bandwidth to the functional units. A non-
blocking memory system in conjunction with scoreboarded
loads allow UltraSPARC-I to sustain a bandwidth of one
access per cycle to the large (up to 4 Mbytes) extemal
cache.

The UltraSPARC Port Architecture (UPA) is a high
bandwidth packet switch interconnect supposing several
coherent masters. The 16-byte wide (128 b) data bus is
protected using 16 b of ECC and is decoupled from the
address bus. Through extensive microarchitecture ~ ~ p p ~ r t ,
UltraSPARC-I can sustain a bandwidth of 600 Mbytes/s
from main memory back to main memory (or to the frame
buffer).

The execution model we chose for UltraSPARC-I is
compared against out-of-order execution models in Section
11. The impact on performance from the issue width and the
mix of functional units is covered in Section III. TradeoRs
in the design of the front end (prefetch and dispatch unit)
as well as in the back end (caches, load buffer, store buffer,
etc.) are explained in Sections IV and V. System intercon-
nect design decisions are described in Section VI. Finally,
Section VI1 describes the reasoning behind implementing
multimedia functions (the visual instruction set (VIS)) on-
chip.

11. EXECUTION MODEL
The execution model of a processor has a major impact

on the whole design process. Not only does the execution
model define the backbone of the pipeline, but it also
affects the cycle time of the machine, the complexity of
validating the logic, the time to tapeout, the die size, etc.
In order to study which execution model would be best for
UltraSPARC-I, we investigated a variety of proposals, each

with a certain degree of “out-of-orderness.” For instance,
given a not-to-exceed die size in a 0.5 pm technology
(around 315 sq mm), an aggressive out-of-order execution
processor with a unified 64-deep window was thoroughly
simulated. Similarly, several instances of a fast superscalar
processor with a simple in-order execution model were
simulated.

In general our simulations showed that an out-of-order
superscalar processor achieved an instructions per cycle
(ET) around 30% higher than a strict in-order machine of
comparable width, when simulating “old” integer code. In
recent years, advances in optimizing compilers, in particular
global code motion, have allowed in-order machines to
close the gap between what an out-of-order machine can
achieve (in terms of IPC). Compilers have the luxury of
being able to look at a window of instructions larger than
what can be achieved in today’s hardware technology (up
to 64 instructions [4]), which means that more aggressive
code motion can be done. Trace scheduling [6], [7] and
superblocks [SI are two examples of global code motion
techniques. Simple architecture additions, such as specu-
lative loads 1221 and a nonblocking memory subsystem
were added to UltraSPARC-I in order to make it worthwhile
for the compiler to hoist instructions so that part of their
latency, or even their full latency, can be hidden. The
combination of profile feedback optimizations and novel
static branch prediction heuristics [9], achieving in some
cases accuracy greater than 80%, mean that an optimizing
compiler can perform code motion on the most likely
instruction path. For nondeterministic events, such as cache
misses, the compiler can generate code assuming that the
latency of an access will not hit the first level cache (but will
hit the second level). Through microarchitecture support
for a nonblocking memory subsystem (e.g., scoreboarded

1654 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 12, DECEMBER 1995

loads) the hardware can deliver data at the same rate as
if the data had been in the first level cache and can do
so while completely hiding the load latency. Transforming
nondeterministic events into deterministic ones is also pos-
sible. For instance, software prefetch can be used so that
data is most likely in the first level cache.

Given that current generation machines are significantly
different from the previous generation, recompilation seems
to be necessary for maximum performance even for an out-
of-order machine. SPEC92 numbers published by vendors
have increased significantly with newer binaries [4]. Sim-
ulation of recompiled code and simulations of rescheduled
code [14] (more in Section 111), indicate that the IPC
difference between an in-order machine and an out-of-
order one on SPECint92 would only be 15% if aggressive
cross block scheduling is used. For scientific computing,
where instruction level parallelism (ILP) is easier to ex-
ploit, we did not notice any significant advantage. Well
known compilation techniques, such as software pipelining
[11] can generate optimized code which is not improved
through hardware reordering. Similarly, applications which
rely heavily on indirect data references (e.g., database
applications) did not see a gain in IPC from out-of-order
execution.

The impact of the more complex out-of-order logic
on cycle time was also evaluated. For instance register
renaming, typically accomplished through an associative
lookup or through a mapping structure, affects the register
file access time if tied to the same pipeline stage [4], or
alternatively, an extra stage in the pipeline may be required
[5] , resulting in a loss of 2 4 % on SPECint92 depending
on the branch prediction scheme used. The instruction
selection logic in a unified window scheme is complicated
by the fact that the processor must recover quickly when
a misprediction or a trap occurs. Selecting one of 64
instruction, or two out of two banks of 32 instructions,
is an operation that exists only in out-of-order processor.
Large fanouts on result buses and complex logic for picking
the “right” instruction (selecting instructions influencing
the height of the dependency graph) was evaluated to
be a cycle time limiter. Finally the unit responsible for
retiring instructions in order so that precise exceptions
be supported also impacts cycle time since it typically
requires more write ports into the register file than an
in-order machine, so that a burst of instructions can be
retired quickly. Otherwise, an unbalanced machine creates
excessive resource overflows (e.g., queues full, out-of-ports,
etc.), delivering less performance. Complex FIFO structures
required for the retirement logic have been described in
various papers [12], [13]. A simplified in-order execution
machine renders these structures unnecessary.

Considering the critical paths above and accounting for
the fact that more logic is required, resulting in a larger
die, we estimated a global impact on cycle time of around
20%. For a 0.5 pm technology this represents the difference
between 167 MHz (our goal for UltraSPARC-I) and 133
MHz. For a 0.35 pm technology, the difference is 50 MHz
(250 MHz versus 200 MHz).

Finally, another key criteria that must be considered when
comparing two architectures is the impact on schedule. The
performance of microprocessors since the early days has
steadily increased at a rate of 1.5-1.6 per year (around 2 x
every 18 months), or around 4% per month. Because of the
additional complexity, larger die, greater pressure on cycle
time, etc., we evaluated that implementing an out-of-order
machine would cost us between 3-6 months. Additionally,
bring up time, due to more complex testing and functional
verification, would be lengthened. Bringing a processor
to market 3-6 months later represents a performance loss
equivalent to 12-26%.

UltraSPARC-I dispatches and executes instructions in the
same order as they appear in the code. Every cycle, the
grouping logic dynamically computes how many of the
top four instructions sitting in the instruction buffer can be
dispatched to the functional units. Instructions are allowed
to complete out-of-order so that long latency operations can
be bypassed by shorter ones. For instance, loads to the data
cache, to the external second level cache, or to main mem-
ory are allowed to finish out-of-order with respect to other
classes of instructions such as integer operations, floating-
point instructions, etc. Similarly, floating-point divides and
squareroots can finish out-of-order with respect to all other
instructions.

The completion unit allows instructions of different la-
tencies to update the register file in an orderly manner,
thus presenting a precise state to the operating system
when an exception or interrupt occurs. Exceptions related to
loads, such as TLB misses, unaligned accesses, protection
violation, are all detected at the beginning of the pipeline.
The only error not accompanied by precise state is due to a
parity error, but in this case recovery is not possible since
the operating system terminates the process anyway.

The UltraSPARC-I execution model, while maintaining
the simplicity of an in-order execution machine, takes ad-
vantage of a nonblocking memory system and scoreboarded
loads in order to hide long latencies operations. The addi-
tional gain in IPC (~ 1 5 %) obtained from a more complex
out-of-order execution model is more than offset from the
benefit in clock rate (-20%) and schedule (-12-26%).

111. ISSUE-WIDTH AND FUNCTIONAL UNITS MIX
UltraSPARC-I is a four-way superscalar unit. Every cy-

cle, groups of 0, 1, 2, 3, or 4 instructions can be issued
to the nine functional units residing on the chip. The
issue-width and the functional unit mix have a large in-
fluence on the CPI and cycle time of a machine, therefore
their selection must be backed by extensive simulations.
Simulations of possible configurations for UltraSPARC-I
ranged from a uniscalar machine to a 5-scalar machine. For
each configuration, various mixes of functional units were
simulated and the full SPEC92 benchmark suite as well as
large applications such as Hspice, database traces, verilog,
etc., were run to quantify the impact on performance. This
methodology is very similar to the one recently described
in [15], except that we also investigated the impact of

TREMBLAY et al.: THE DESIGN OF THE MICROARCHITECTURE OF ULTRASPARC~-I 1655

Table 1 Improvement Over an Uniscalar Machine
Issue-width Code compiled Rescheduled code

for uniscalar for target processor
uniscalar (normalized) 1x 1x

2-scalar 1.14X 1.46X
3-scalar 1.26X 1.78X
4-scalar 1.33X 1.83X

64-b integer ALU

Table 2 Speedup Obtained by Adding an ALU
Issue-width I Code compiled for I Rescheduled code for

2

uniscilar target machine

target specific code (while an out-of-order machine was
considered in [15]). As shown in Table 1, under the column
labeled “Code compiled for uniscalar,” the improvement on
existing code over a uniscalar machine €or a 2, 3, and 4-
scalar machine is 14%, 26%, and 33%, respectively, over
a uniscalar processor for SPECint92.

An important factor to consider when measuring such
variations is which compiler is used to generate the binaries
feeding the simulation. The numbers shown in the first
column in Table 1 were obtained from binaries generated
for a uniscalar processor. A compiler which has knowledge
of the underlying machine can generate code tailored to the
width of the machine. Optimizations such as reorganization
of the order in which the instructions appear, predicated
execution, as well as cross block scheduling translate into
significant gains for superscalar processors [IQ]. In order
to measure how much performance could be gained for
each configuration with optimized code, we developed a
“rescheduler.” The rescheduler has the capability to look
at a large window of instructions (128, 256, 512, etc.)
generated from a trace and can regenerate an optimized
trace by moving instructions by tens of positions while still
respecting data dependencies. Several parameters can be
set to bound the code motion. For example, the number
of branches allowed to be passed can be limited. In this
way, aggressive compiler optimizations can be simulated
in a much easier manner than by modifying the compiler.

Using the rescheduler, we tailored binaries for each
configuration in Table 1 and obtained a much better im-
provement as shown in the same figure under the label
“rescheduled code.” The speed-ups reached are 46%, 78%,
and 83% for a 2, 3, and 4-scalar machine, respectively.
Based on such simulations and based on analysis of the
impact of the issue-width on critical paths, we set the issue
width of UltraSPARC-I at four.

Similar experiments were conducted to determine the
functional unit mix. An example is given in Table 2. The
improvement obtained from adding a second integer ALU
for a 2-scalar and 3-scalar machine is shown for both
existing and rescheduled code.

The improvement on the code scheduled €or a uniscalar
processor is 6% for the 2-scalar machine and 13% for
the 3-scalar machine. For rescheduled code, the gain is

3-scalar

Table 3 Functional Units on UltraSPARC-I

1.13X 1.25X

Load/Store
Branch
Floating-point adder
Floating-point multiplier
Floating-point dividedsquare root
Graphics adder 1

1

instruction 12
Buffer Entry

Dlspatch

Instructions

Fig. 3. UltraSPARC-I front-end.

doubled to 12% and 25%, a much more attractive benefit.
This methodology was used to arrive at the current mix of
functional units shown in Table 3.

rV. FRONTEND
The front end consists mainly of the instruction cache,

the branch and target prediction mechanism, the instruction
translation lookaside buffer (ITLB), the instruction buffer
and the dispatch unit (Fig. 3).

A. Instruction Cache
The instruction cache (I-cache) is somewhat unique in its

organization. It is described as 16 kB in size, if one counts
a SPAFX instruction as 4 bytes. However, stored with each
instruction in the I-cache are predecoded bits that are used
for instruction fetching. The I-cache has qualities of both
a direct-mapped and a two-way set-associative cache. It
can be considered two-way in that a particular address can
be present in two different locations in the cache. It is
considered direct-mapped in terms of access time in that
the “set” to access is predicted ahead of time, so there is
no comparison function in the access path. This is a cycle-
time and power dissipation advantage in that only one set is
accessed. The “set” prediction bit is obtained from the Next

1656 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 12, DECEMBER 1995

Field RAM, explained in Section IV-B. In the rare case of a
set mispredictions, a two-cycle fetch penalty occurs, which
does not necessarily translate into a loss of performance
due to the instruction buffer. This approach also allows
the I-cache to be both physically indexed and physically
tagged, simplifying coherence issues. The I-cache line size
is 32B (eight instructions); there is no subblocking. An I-
cache fill takes two clocks since the interface to the rest of
the memory system is 16B wide.

B. Branch Direction and Branch Target Prediction
Every cycle up to four instructions can be prefetched

from the instruction cache and sent to the instruction
buffer. Each line in the I-cache contains eight instruc-
tions (32 bytes). Every pair of instructions has a 2-b
branch prediction field (Fig. 4) which maintains history of
a possible branch in the pair. The four prediction states
are the conventional strongly taken, likely taken, strongly
not taken, and likely not taken [16]. The advantage of
the in-cache prediction scheme is that it avoids the alias
problems encountered in branch history buffer and other
similar structures [17]. Implemented in this way, every
single branch in the I-cache has its dedicated prediction bits
(ignoring the rare case of branch couples), which translates
into a high successful prediction rate of 88% for integer
code, 94% for floating-point (SPEC92), and 90% for typical
database applications.

Every group of four instructions in the cache also has
a “next field” (Fig. 4) which is simply a pointer to where
the prefetcher should access instructions for the very next
cycle. In the case of sequential code or for code with a
branch predicted not taken, the next field points to the next
four instructions in the cache. The next field will contain
the I-cache index (including the set) of the branch target if
a branch is predicted taken. The advantage of this scheme
is that the next field can always be fed back to the I-cache
without qualifying a possible branch thus saving levels of
logic. The next field mechanism is capable of handling
a branch every cycle even if previous branches haven’t
been resolved. Due to the four cycle branch resolution
latency, UltraSPARC-I can speculate five branches deep
(including the branch being resolved) representing up to
18 instructions.

IO I1 BP 12 13 BP

V. MEMORY SUBSYSTEM
The memory hierarchy consists of the instruction cache

(I-cache), data cache (D-cache), and external cache (E-
cache). The load buffer and store buffer provide an interface
between the Integer and Floating-point functional units
and the memory system for data references. There is
both an instruction and data memory management unit
(IMMU and DMMU) which provide dedicated virtual-
to-physical address translation for instruction and data
references, respectively.

A. MMU’s
UltraSPARC-I supports a 44-b subset of the full 64-

b virtual address space. This reduction was done due to

NFA

Fig. 4. Logical line in the instruction cache.

both die size limitations and timing impacts. UltraSPARC-I
would have been approximately 3-5% larger to support a
64-b virtual address as this affects not only the MMU’s, but
also affects instruction fetching, branch resolution, and trap
recording datapaths. Additionally, one of the top critical
paths in the machine involves the generation of the virtual
address in the E-stage of the pipeline (Fig. 2) through a
fast, dynamic adder and distribution to other parts of the
chip (the branch unit for register-based control transfer
instructions (CTI’s), the D-cache and D-cache tag RAM’S
for data references, the Data TLB for virtual-to-physical
address translations). So, even though all 64 b are generated
in order to check that the address is not out-of-range, there
is no need to distribute the upper 20 b, nor optimize their
timing. From the OS point-of-view, 44 b of virtual space
are sufficient for the lifetime of the processor.

Each MMU has a 64-entry, fully associative TLB which
can perform one address translation per cycle. Four page
sizes are supported: 8 kB, 64 kB, 512 kB, and 4 MB.
Larger page sizes are useful in mapping large contiguous
regions of memory like U 0 space, frame buffers, and
parts of the kernel. Without them, we are only able to
map 1 MB (128 * 8 kB) of physical memory, which
would otherwise degrade performance of larger External
caches (e.g., 75% of a 4 MB E-cache would be accessible
at any given time only after taking a TLB miss). We
considered set-associative approaches for the TLB’s, but
found it difficult to conveniently support multiple page
sizes without having dedicated TLB’s for the larger pages.
The Instruction and Data TLB’s are identical mainly to
minimize the design resources required, and the number
of entries was chosen based on performance analysis on a
wide range of benchmarks.

TLB misses are mainly handled in SW as fast traps,
with a fair bit of HW support provided in the MMU’s.
This decision was made for two main reasons: 1) offer the
flexibility of a software solution to the operating system
so that various paging mechanisms can be supported, and
2) prior experience with hardware TLB miss processing
showed it to be complex, prone to bugs, and difficult to
verify.

B. Data Cache
The D-cache is a 16 kB direct-mapped cache. It has a

32B line size, with 16B subblocks. It is virtually indexed
and physically tagged. It operates on a write-through, no
write-allocate policy. It is nonblocking so that D-cache
misses and other conditions which delay memory operations
(specifically loads) do not necessarily penalize subsequent
instructions.

We chose a direct-mapped design for simplicity, fastest
access time, and low latency, which results in a 1-cycle
load-use penalty. These advantages, combined with an ag-

1657
TREMBLAY et ai.: THE DESIGN OF THE MICROARCHITECTURE OF ULTRASPARC~-I

gressive extemal cache implementation, offset the slightly
higher performance that can be obtained though a set-
associative cache. Once we decided to implement a direct-
mapped design, our choice of cache sizes was limited to
powers of 2 (e.g., 8 kB, 16 kl3, 32 kB, etc.) and here
die size limitations were decisive. Due to the 8 kB page
size, the D-cache must be virtually indexed so as not to
wait for the TLB to produce the extra physical address bit.
We depend on the OS to not create virtual aliases through
its page mapping scheme, so the only complexity comes
from maintaining cache coherence with the E-cache and
other processors. In such cases, a purely physical address
is provided and used to interrogate both possible "virtual"
locations. This requires slightly more bandwidth, but since
the D-cache obeys the principle of inclusion with respect
to the E-cache, this is an acceptable tradeoff.

Performance simulations indicated that a 16B line size
was optimal, but area constraints forced us to implement
a 32B line size, with 16B subblocks, basically halving the
size of the D-cache tag RAM. Given that the interface to
the D-cache is 16B wide, we are able to do a subblock fill

Fig. 5, Interaction of the load buffer and store buffer with the
D-cache E.cache,

every cycle.
We chose a write-through, no write-allocate policy over

a strict write-back or variations which combined write-
througldwrite-back policies via modes or on a page-by-page
basis. We judged the write-through design to be of much
less complexity and pose fewer risks for a bug-free design.
There are three main reasons why a write-through design
was acceptable on UltraSPARC-I:

Lines in the D-cache are always clean, which means
that when loads are scheduled for the latency of the E-
cache and bring data in the D-cache every cycle, dirty
victims do not have to be flushed back to the next level.
Sustaining one load per cycle to the external cache was
a key design requirement for UltraSPARC-I in order
to run large applications fast.
An E-cache must be present (i.e., there is no option
to run UltraSPARC-I with primary caches only). This
means that Stores need not be reflected on the memory
interconnect and that memory does not have to do
read-modify-write operations.
The E-cache is pipelined so that one operation (either
load, store, or instruction fetch) can be completed
every cycle. This, combined with techniques to be
discussed later, provides sufficient store bandwidth to
reflect all stores to the E-cache.

The D-cache tag RAM is dual ported, unlike the data
RAM, which is single-ported. It has two independent ports:
a read port and a reauwrite port. Providing two ports
allows a tag look-up to occur for a younger load or store
in parallel with a D-cache fill for an outstanding miss or an
invalidation (e.g., due to an external snoop). This basically

chose to implement such an execution model in an effort
to hide as much of the memory latency as possible. This
scheme is less attractive in single-scalar designs, but in
UItraSPARC-I every clock cycle the machine is waiting for
a load to complete means that up to four instructions could
not start execution. Thus loads are completed out-of-order
with respect to subsequent instructions which do not depend
on the load result. We chose not to allow load operations to
r e m out of order with respect to other load, mainly due
to complexity and cycle time reasons.

If a Load cannot be returned immediately from the D-
cache, it is placed on the load buffer (Fig. 5) . This typically
for D-cache misses, but can also occur for read-after-write
hazards, noncacheable references, nonperformance critical
instructions, and other reasons. Nine entries were imple-
mented so that the machine could maintain a throughput
of one load per cycle, even in the presence of D-cache
misses (assuming an E-cache hit). This is an attractive
feature, especially for most Floating-point loops and other
latency toPerant algorithms, as the compiler can schedule
instructions for the longer E-cache latency,
the much shorter D-cache latency. This effe
such programs to perform as if they were running out of a
very large primary cache. We made no effort to cover the
latency to main memory since such accesses are usually
infrequent due to the effect of the much larger external
cache. Additionally, scheduling code to do useful work in
the 20-40 cycles behind an E-cache miss is quite difficult
(the E-cache is nonblocking but only one E-cache read miss
can be outstanding)

allows the pipeline to process 1 load per cycle from either
the D-cache or the E-cache.

C. Load Buffer
The Load Buffer is a nine-entry FFO-style queue that

enables the machine to support nonblocking loads. We

D. Store Buffer
The Store Buffer is an eight-entry FIFO-style queue that

provides a temporary holding place for store operations
until they are "committed" and can update the D-cache
and/or E-cache. Each entry holds a 64-b datum, as well as

1658 PROCEEDlNGS OF THE IEEE, VOL 83, NO. 12, DECEMBER 1995

its corresponding physical address and control information.
The Store Buffer was required to have enough storage for
64 b of data, in order to support the Visual Instruction
Set’s Block Store operations. Thus eight entries was the
minimum. Simulations indicate that additional entries did
not give a noticeable performance boost, given some of the
features described below.

Given that the D-cache is write-through, all cacheable
stores must be reflected to the E-cache. Unlike loads,
stores are done in two steps: first, the E-cache is checked
for hidmiss; second, the E-cache is updated with the
appropriate data. The E-cache tag and data RAM’S are
decoupled (i.e., they are tied to separate address and data
wires) so that a tag check can occur in parallel with the
E-cache data update of an older store (Fig. 5). Since the
E-cache tag check can be started as soon as the physical
address is available, we are typically able to maintain a
throughput of one store per clock.

There are several additional techniques that we use to
minimize both E-cache tag and data RAM bandwidth
requirements. The tag check and data write for a particular
store are not explicitly synchronized, which allows for
some variation in access patterns. To support this, the E-
cache hidmiss indication is queued in the Store Buffer
for eventual use. In the rare case that the state of the E-
cache line is changed before the store can be completed,
the tags are simply reaccessed. Additionally, consecutive
stores to the same E-cache line (64 b) typically require
only a single tag check, further reducing needed tag check
bandwidth. Lastly, a compression feature is implemented
which combines the last two Store Buffer entries into a
single operation if they target the same 16 b subblock. There
are no restrictions as to memory alignment nor on how
many entries can be combined into a single operation. Thus
data write transactions can be minimized significantly. This
feature came mostly for free since it was already necessary
to be able to expand 64-b store operations to the 128-b
width of the interface to the E-cache.

D. External Cache
The E-cache lies between the primary caches (I-cache and

D-cache) and main memory. It is direct-mapped and both
physically indexed and physically tagged. E-cache sizes
between 512 Kb and 4 Mb are supported. It operates on
the expected write-back, write-allocate policy. The 64-b
line size (no subblocking) and modified, own, exclusive,
shared, invalid (MOESI) coherency algorithm were chosen
based on system considerations which are discussed later.
All E-cache control is handled on chip, while the tag and
data arrays are implemented in fast, synchronous SRAM’s.

The I-cache and D-cache are always kept consistent
with the E-cache, thus obeying the principle of inclusion.
Inclusion, as well as the fact that the D-cache operates on
a write-through policy, means that the E-cache can act as a
filter for cache coherent requests from other processors or
VO devices, thus reducing the load on the primary cache
and eliminating the need for duplicate tag arrays. Since the

Fig. 6. External cache pipeline.

D-cache cannot hold “dirty” data, the latency to access data
in another processor’s cache is minimized.

A virtually indexed E-cache was considered briefly, as
this hypothetically allows an access to begin a cycle earlier
in the pipeline (i.e., before the TLB translates from virtual
to physical address). This was rejected for a variety of
reasons. For one, E-cache accesses would have to speculate
that a D-cache miss would occur in order to gain an extra
cycle; too much speculation produces extra bandwidth on
the E-cache bus preventing other nonspeculative requests
from being executed, too little speculation reduces the
benefit. Second, it requires the OS to manage virtual page
aliases on E-cache size boundaries. Third, it complicates
the cache coherency problem by requiring duplicate and/or
extra virtual address bits to be passed around on the
interconnect.

We chose to implement a direct-mapped design over
2, 3, or 4-way set-associative approaches. As mentioned
earlier with respect to the D-cache, there is a tradeoff of
complexity and latency versus hit rate, although in this case
response to cache coherency traffic is also a consideration.
It is well known that the performance of direct-mapped
caches is more susceptible to the allocation of memory
space and virtual-to-physical address mapping [181. On the
other hand, the complexity (added pins) of fetching multiple
tags from external SRAM’s or the added circuitry needed
to predict the set [4] was not attractive especially since in
the latter case, the penalty for mispredicting the way can
offset the performance advantage of an associative cache
(seven cycles for the MIPS R10000).

The additional latency for an access that misses in an
internal cache (I-cache or D-cache) and hits in the E-cache
is six cycles. For a 166 MHz processor, 6 ns, synchronous
SRAM’s are used, allowing a throughput of 1 read or write
per cycle, which is crucial to supply the bandwidth required
by the internal caches and cache coherency traffic in SMP
configurations. Both tag and data arrays use an identical
SRAM, which simplifies timing analysis and reduces cost.
There is a penalty when switching from reads to writes as
a dead cycle is inserted on the bidirectional E-cache bus to
avoid electrical issues with overlapping drivers. The SRAM
includes a one-entry delayed write buffer which reduces
this penalty by one clock cycle. Additional entries in this
write buffer could have reduced the penalty to zero cycles,
but SRAM vendors were unwilling to modify “commodity”
type parts within an acceptable cost structure. The E-cache
pipeline is shown in Fig. 6. One should note that the AD,
AC, and DT stages occur off-chip, while the RQ and TC
stages occur on-chip.

Both data and tag arrays are protected with byte parity.
Due to the high reliability of SRAM’s, ECC protection

TREMBLAY et ai.: THE DESIGN OF THE MICROARCHITECTURE OF ULTRASPARC~-I 1659

was judged unnecessary. Reasonable ECC (e.g., for a 64-b
word) requires a read-modify-write for any write smaller
than a word, a major performance bottleneck (e.g., for
writing pixel data).

VI. THE ULTRASPARC PORT ARCHITECTURE (UPA)

A. Pin Allocutions
Chip level interfaces are driven by hard physical con-

straints. Given our die size goal, and use of standard U 0
pads and BGA packaging technology, a total of around 320
I/O signals were deemed available (UltraSPARC-I ended up
having 333 signal pins and 187 power and ground pins).

A 64-b E-cache interface with a 64-b shared addresddata
system interface was originally considered. Simulations in-
dicated that large applications, graphics routines, as well as
functions used in network protocols (e.g., check summing
large amount of data) would quickly saturate such a bus.
These performance effects, although not fairly represented
by SPEC92 benchmarks, are critical for real-world ap-
plications. The goal for the system interface was simple:
increase performance for a wide range of user applications
by minimizing latency and maximizing throughput for both
memory and noncacheable transactions 1191. No easy goal
when one usually comes at the expense of the other.

A wide 144-b E-cache data interface for low latency LP
cache fill was chosen. That needed to be coupled with a
wide path to memory to keep E-cache fill and evict time
low. Keeping the E-cache bus busy twice as Bong for these
events (with a narrower bus) would eventually stall the
processor otherwise, since L1 and E-cache misses tend to
occur in bursts.

An E-cache built out of SRAM’s with two bus ports
(one port for the processor, one port for the system) was
rejected due to its high cost and lack of availability. The
other alternative, adding another wide 144-b bus on the
processor was also rejected due to lack of signal pins
available. The solution was to connect the external cache
to memory without going through the processor, by adding
two cheap external buffer chips (Fig. 7 and Section VI-B).
It was critical that this addition did not impact our ability to
run the fully pipelined E-cache at the processor clock rate.
This separate path for data resulted in a relatively small
number of pins on the processor for the system interface.
A separate system address bus allows us to send address and
data in parallel to the system, which is especially important
for sustaining high throughput to graphics subsystems.

Thirty-seven pins are used for the system address, ten
for handshaking on requestheply handshaking, five for
arbitration, five for controlling the buffers, and four for
ECC reporting. The first cycle of the address packet sends
all bits necessary for initiating the RAS cycle at the DRAM.
The address packet includes a 16-b byte enable field, which
is useful for efficiently supporting random pixel writes to a
graphics frame buffer. A distributed arbitration protocol is
used on the address bus, saving cycles on every transaction,
compared to an external arbiter. Even though the system bus
is packet switched, there is no arbitration for, or use of, the

I Cache

Fig. 7. System interface for UltraSPARC-I.

address bus when returning a data packet. Separate radial
wires provide the necessary handshake for completing data
transfers.

The separate address bus keeps data bus utilization lower,
which helps minimize the average latency for E-cache fills
for both uni- and MP systems. Bus contention increases
latency, which has a cumulative negative throughput effect.
Longer latency usually results in increased distance between
requests, due to program data dependencies. The difference
between “peak” and “realized” bandwidth for many sys-
tems has traditionally been caused by long latencies for
individual events.

B. UltraSPARC Data Buffer (UDB)
Usage of external buffers allowed us to add FIFO’s and

ECC checwgenerate logic without area or latency penalty.
The UDB’s are pad limited, making “extra” active area
available, and data transfers take one system clock to pass
through. So ECC can be computed here, for “free.” For
cost reasons, the UltraSPARC Data Buffer consists of two
ASIC’s. Since the rest of the system was built from similar
ASIC‘s, the UDB does not need the additional performance
of a full semicustom design.

We looked at running the UDB with two clocks, but
decided to only use the system clock for simplicity. Move-
ment of store data into the UDB is under processor control,
at which point unloading it is the responsibility of the
system. Queues are used to hide the latency inherent in
backflow control signals from the subsystem receiving the
data. ”his allows UltraSPARC-I to sustain the peak data
bus bandwidth for noncacheable stores to frame buffer,
for example. In addition, buffers are available for E-cache
fill, E-cache writeback, 64-byte block stores, and E-cache
copybacks on behalf of other cache-coherent requestors.

C. Flexible Interconnect for Low Cost Uniprocessors,
High PerjGomnce Multiprocessor Systems

In order to keep snoop latency low and predictable for
multiprocessor systems, a duplicated set of the external
cache tags can be tightly coupled to the system controller
so that only snoop hits are sent to the individual processors.
MP systems without dual tags like these can see their
performance decrease as traffic increases. The average

1660 PROCEEDINGS OF THE IEEE, VOL. 83, NO. 12, DECEMBER 1995

latency for snoops can increase, because of collisions
with processor access to the E-cache tags. which causes
the average memory read latency to increase. Also, some
systems end up being throttled by limited throughput when
snooping the E-cache tags. Having dual tags eliminates
these problems, providing consistent high throughput and
low latency.

Uniprocessors can work without dual tags due to the low
snooping traffic. Only cache coherent IO activity requires
snooping the E-cache tags. UltraSPARC-I was designed to
support systems with and without dual tags.

UltraSPARC-I targets a wide range of designs, so a
flexible system interface was important. As processors
integrate more and more system functions, it is easy for
the unwary to hardwire some interface behavior that makes
implementations of SMP and MPP systems difficult. For
instance, UltraSPARC-I doesn’t snoop addresses on the
shared bus. This would force an ordering of coherency
events dependent on their arrival on that single shared
address bus. The processor only receives snoop requests
after the system decides the processor cache needs to be
invalidated, or needs to provide the data. Dual tags or
directories can be used to make this decision.

Uniprocessor systems with cache coherent IO DMA can
interrogate the processor cache for every DMA to memory
though. The overall IO DMA bandwidths don’t cause
much E-cache bandwidth to be lost, and the processor
responds fast enough to not impact the deliverable IO DMA
bandwidth.

D. Many Outstanding System Events
The current implementation of the UPA supports eight

outstanding noncacheable stores, enough to offset the la-
tency for returning a handshake signal indicating an entry
has been unloaded from the input queue in the system,
without creating a bubble in peak data delivery.

There can also be two outstanding block stores, one
outstanding writeback, and one outstanding E-cache miss.
The external cache control unit keeps track of three E-cache
misses internally, so there is a fair amount of overlap in E-
cache miss processing. Only the processor pin-to-pin delay
is serialized for an E-cache miss from a single processor.

Given the latency inherent in a typical memory system,
UltraSPARC-I can demand over 350 Mbytes of memory
bandwidth. Adding 175 Mbytes of writeback bandwidth
creates the need for a wide banked memory. The 16-byte
wide UPA data bus running at 83 MHz can accommodate
several processors by delivering 1.3 Gbytes of data to
clients.

VII. MULTIMEDIA SUPPORT
Graphics speed has a big effect on a workstation user’s

perception of performance. Graphics functionality is grow-
ing increasingly more sophisticated including desktop video
for teleconferencing and broadcast quality viewing, 3D vi-
sualization and animation, image manipulation for desktop
publishing, etc.

ddresses

Compietlon Unit

Fig. 8. Floating-point and graphics unit.

Up until now, specialized graphics hardware was required
for these applications. Typically, additional functionality
could be provided to the base machine by adding one or
more graphics cards. For example, MPEG-1 decompres-
sion could be achieved by adding one card, while 3D
visualization could be supported by adding another card.
Implementing support for these applications directly on the
processor may remove the need for additional graphics
cards, leading to better overall system cost and freeing
precious 1/0 slots.

The lack of a standard platform that supports these
features has hindered the development of multimedia ap-
plication software. With UltraSPARC-I, we saw an oppor-
tunity to provide a standard multimedia capability for future
SPARC systems with only a 3% increase in the die area. The
30 new instructions from the visual instruction set (VIS) can
be used as other RISC instructions on UltraSPARC-I. There
is no need to perform memory mapped I/O or to access 110
devices.

Implementing VIS on the processor also means that the
performance scales with frequency upgrades. Typically,
processor frequency follows an aggressive curve due to
gate shrinks and/or full process shrinks. These are typically
not available or do not improve as rapidly on ASIC’s.
Scaling also appears in multiprocessor systems. Many mul-
timedia applications lend themselves well to multithreading,
which can attain, in the ideal case, linear speedup with N
processors.

Multimedia instructions are executed by two specialized
execution units in the floating point datapath (See Fig. 8).
These RISC style instructions provide the core operations
needed by multimedia algorithms. Specific algorithms such
as MPEG are implemented by software libraries using these
instructions. The execution units are fully pipelined so that
each cycle 2 VIS instructions can be issued.

The execution units were added to the floating-point
unit mainly for four reasons. First, more registers are
available because graphics data can be stored in all 32
FP registers while addresses and loop counts are stored
in the integer registers. Second, floating-point units are
typically not used concurrently with VIS instructions, which

TREMBLAY et al.: THE DESIGN OF THE MICROARCHITECTURE OF ULTRASPARC~-I 1661

means that the issue slots that would normally be used for
floating-point instructions can be used for VIS instructions
allowing the maximum parallelism to be achieved (four
instructions per cycle). Third, some instructions have a
latency of three clocks which fits naturally into the floathg-
point pipeline design. Fourth, the basic cycle time of the
machine is based around key datapaths components dictated
by the integer side of the processor (e.g., &U’s, data
cache access, etc.). Implementing VIS instructions on the
integer side would have introduced extra gate levels in the
adder (allowing intermediate carries to propagate for normal
adds), it would have added new functional units (e.g., four
signed multipliers), and more bypasses into critical muxes
would have been needed.

A complete description of VIS is given in [20] while its
usage for a broadcast quality MPEG player is described in
P11.

VIII. CONCLUSION
The realization of UltraSPARC-I required 5.4 million

transistors for the circuits, 600 computers (1000 processors)
for simulation, 2 Tbytes of disk space, 300 person-years,
etc. While these “resources” contribute to making the
implementation of a processor successful, the initial phase
of the project, more precisely the architecture and mi-
croarchitecture definition, have a large impact on not only
how the processor will perform but also on how long
the implementation will take and how expensive the die
is going to be. In this paper we have presented how
the microarchitecture of UltraSPARC-I was derived by
presenting various proposals and alternatives that were
investigated before settling on the final design.

ACKNOWLEDGMENT
The authors would like to acknowledge Les Kohn and

Bill Joy for their contribution to the microarchitecture, and
the whole UltraSPARC team for actually delivering the
chip! The authors would also like to thank Don Van Dyke
and Robert Garner for constructive comments on the paper.

REFERENCES
[I] M. Tremblay, G. Maturana, A. Inoue, and L. Kohn, “A fast and

flexible performance simulator for micro-architecture trade-off
analysis on UltraSPARCm?-I,” in Proc. 32nd Design Autom.
Con$, San Francisco, June 1995, pp. 2-6.

[2] G. Lauterbach, “Accelerating architectural simulation by paral-
lel execution of trace samples,” Sun Microsystems Labs., Tech.
Rep. SMLI TR 93-22, Dec. 1993.

[3] D. Greenley et al., “UltraSPARC: The next generation super-
scalar 64 bit SPARC,” in 40th Annu. Compcon, Mar. 1995, pp.
4 4 2 4 5 1.

[4] L. Gwennap, “MIPS RlOOOO uses decoupled architecture,”
Microprocessor Rep., vol. 8, no. 14, pp. 17-22, Oct. 1994.

[5] G. F. Grohoslu, “Machine organization of the IBM RISC
systernl6000 processor,” IBM J. Res. and Devel., vol. 34. no.
1, pp. 37-58, Jan. 1990.

[6] J. A. Fisher, “Trace scheduling: A technique for global mi-
crocode compaction,” IEEE Trans. Comput., vol. (2-30, pp.
4781190, July 1981.

Cam-
bridge, MA: MIT Press, 1987.

[7] 5. R. Ellis, Bulldog: A Compiler for VLIWArchitectures.

181 W. W. Hwu et al., “The superblock An effective structure for
VLIW and superscalar compilation,” J. Supercomputing, pp.

[9] T. Ball and .I. Lams, “Branch prediction for free,” in Proc. ACM
S i G F W 1993 Con$ on Programming Languages Design and
Implementation, June 1993.

[lo] S. A. Mahlke et al., “Effective compiler support for predicated
execution using the hyperblock,” in Proc 25th Int. Symp. on
Microarchitecture, Dec. 1994, pp 217-227.

[11] M. Lam, “Software pipelining: An effective scheduling tech-
nique for VLIW machines,” in Proc. SIGPwV’88 Conf on Pro-
gramming Language Design and Implementation, June 1988,

229-248, July 1993.

pp. 318-328.
[12] J. E. Smith and A. R. Pleszkun, “Implementation of precise

intermDts in DiDelined vrocessors.” in Proc. 12th Annu. Symp.
on Coi&uteiAkhitectzk (ISCA-SS), June 1985, pp 3 6 4 4 .

[13] 6. S. Sohi and S. Vajapeyam, “Instruction issue logic for high-
performance interruptible pipelined processors,” in Proc. 14th
Annu. Symp. on Computer Architecture (ISCA87), June 1987,

[14] M. Tremblay and P. Timmalai, “Partners in platform design,”
IEEE Spectrum, pp. 20-26, Apr. 1995.

[15] S. Jourdan, P. Sainrat, and D. Litaize, “Exploring configurations
of functional units in an out-of-order superscalar processor,” in
Proc. 22nd Annu. Int. Symp. on Computer Architecture (ISCA-
221, June 1995, pp. 117-125.

[16] J. E. Smith, “A study of branch prediction strategies,” in
Proc. 8th Annu. Int. Symp. on Computer Architecture, 1981, pp.

[17] B. Calder and D. Crunwald, “Next cache line and set predic-
tion,” in Proc. 22nd Annu. Int. Symp. on Computer Architecture
(ISCA-22), June 1995, pp. 287-297.

[1&] A. Seznec, “A case for two-way skewed associative caches,” in
Proc. 2Ufh Annu. Int. Symp. on Computer Architecture (ISCA-
23), May 1993, pp. 169-178.

[19] K. Normoyle, 2. Ebrahim, B. VanLoo, and S. Nishtala, “Ultra-
SPARC port architecture,” in Hot Interconnect IiI Symp. Rec.,

pp. 3644.

135-148.

Aug. 1995.
r201 L. Kohn et al.. “The visual instruction set (VIS) in Ultra- L .

SPARC,” in Proc. 1995 Compcon Con$, Mar. 1995, pp.
4 6 2 4 9 .

[21] C. Zhou et al., “MPEG video decodmg with the UltraSPARC
visual instruction set,” in Proc. 1995 Compcon Con$, Mar.
1995.

[22] D. L. Weaver and T. Germond, The SPARC Architecture Mun-
ual, Vers. 9. Englewood Cliffs, NJ: Prentice-Hall, 1994

Marc Tremblay (Member, IEEE) received the
physics engineering degree from Laval Univer-
sity, Quebec, Canada, in 1984 He received the
M S and Ph D degrees in computer science
from the University of California at Los An-
geles, in 1991 and 1995, respectively

He is a Computer Architect involved in the
research and development of high-performance
processors at Sun Microsystems. Since 1991, h ~ s
man contributions have focused on the rmcroar-
chtecture definition and performance evaluahon

of the 64-b UltraSPARC I and I1 processors He has also participated
in the definition of SPARC V9 whch is the 64-h extension of the
existing 32-b SPAEK instruction set His current work relates to improving
the synergy between the processor and the compiler, and to including
extensive multimedia capabilities dlrectly onto the processor He is also
a member of Sun’s Architecture Group, whose charter is to propose and
investigate novel architecture features that enhance the performance of
mcroprocessors.

1662 PROCEEDINGS OF THE IEEE, VOL. 83, NO 12, DECEMBER 1995

dahl/Key Computer Labs
of the Nexgen x86-comp

Dale Greenley received the B.S. degree in com-
puter engineering from Santa Clara University,
Santa Clara, CA.

He is currently a design manager on a next
generation SPARC processor at Sun Microsys-
tems’ SPARC Technology Business Unit. His
primary responsibility on the UltraSPARC pro-
gram was the architecture, implementation, and
verification of the LoadlStore Unit. Previously,
he has worked on a variety of CPU programs,
most notably on the Integer Unit for the Am-
ECL Supercomputer and as an original member

latible processor design team.

Kevin Normoyle received the B.S.E.E. degree
from Cornell University, Ithaca, NY, in 1981.

He worked on UltraSPARC’s external cache
and system interfaces. Before coming to Sun Mi-
crosystems, he designed graphicshector work-
stations for Stellar and Stardeut Computers, and
built minicomputers for Data General. He is
currently at work on MicroSparc 111.

TREMBLAY et al.: THE DESIGN OF THE MICROARCHITECTURE OF ULTRASPARP-I 1663

