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The realization of a high pe@ormance modem microprocessor 
involves hundreds of person-years of conception, logic design, cir- 
cuit design, layout drawing, etc. In order to leverage effectively the 
5-10 millions of transistors available, careful microarchitecture 
tradeoff analysis must be pe@ormed. This paper describes not only 
the microarchitecture of UltraSPARC-I, a 167 MHz 64-b four- 
way superscalar processor, but more importantly it presents the 
analysis and tradeoffs that were made “en route” to the$nal chip. 
Among several issues, the in-order execution model is compared 
with alternatives, variations of the issue-width of the machine 
as well as the number of functional units are described, subtle 
features that are part of the memory hierarchy are explained, and 
the advantages of the packet-switched interconnect are exposed. 

I. INTRODUCTION 

A. Overview of UltraSPARC-1 
UltraSPARC-I is a highly integrated 64-b, four-way su- 

perscalar processor targeted at running real life applications 
2.5-5x faster than the previous SPARC processors. To 
achieve this goal, several processor architectures, as well 
as a plethora of microarchitecture features, were investi- 
gated. This paper describes why we settled on the current 
architecture implementation. 

In order to quantify why we should use a certain ex- 
ecution model, or a certain branch prediction scheme, 
or a certain mix of functional units, etc., we wrote an 
accurate performance simulator with tunable parameters 
so that many variations could be simulated [l]. A novel 
sampling methodology [2] was used to speed up simulations 
so that turnaround time for simulating a set of about 30 
applications (including SPEC92) on a new machine model 
would take only a few hours. No less important, the impact 
of the features on cycle time was evaluated through circuit 
simulation (Spice) of the main paths affected. 

The block diagram in Fig. 1, shows a high level represen- 
tation of the microarchitecture of UltraSPARC-I. The front- 
end of the machine responsible for prefetching, decoding, 
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Fig. 1. UltraSPARC-I block diagram. 

and dispatching instructions (stages F, D, and G in Fig. 2) 
as well as predicting branches and their target, is capable 
of sending four instructions per cycle to the nine functional 
units even in the presence of conditional branches. Section 
IV describes how we achieved this and describes some 
of the alternatives that were considered. The core of the 
machine consists of nine functional units. In Fig. 1 we show 
how many instructions can be dispatched to these units 
every cycle. For instance, two instructions (two arrows) 
can be sent to the floating-point and graphics block (which 
contains five distinct functional units). All functional units 
are fully pipelined except for the floating-point divide and 
square root unit. Instructions are dispatched in order but 
long latency instructions (e.g., FP dividehquare root, load 
misses, etc.) are allowed to complete out-of-order with 
respect to other classes of instructions, so that their latency 
can be hidden. 

The backend of the processor is composed of the load 
buffer, the store buffer, the data cache (also referred to as 
the first level cache), the Data Memory Management Unit 
(DMMU), and the second-level cache (also referred to as 
external cache) controller. These units combine to provide 
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the necessary data bandwidth to the functional units. A non- 
blocking memory system in conjunction with scoreboarded 
loads allow UltraSPARC-I to sustain a bandwidth of one 
access per cycle to the large (up to 4 Mbytes) extemal 
cache. 

The UltraSPARC Port Architecture (UPA) is a high 
bandwidth packet switch interconnect supposing several 
coherent masters. The 16-byte wide (128 b) data bus is 
protected using 16 b of ECC and is decoupled from the 
address bus. Through extensive microarchitecture ~ ~ p p ~ r t ,  
UltraSPARC-I can sustain a bandwidth of 600 Mbytes/s 
from main memory back to main memory (or to the frame 
buffer). 

The execution model we chose for UltraSPARC-I is 
compared against out-of-order execution models in Section 
11. The impact on performance from the issue width and the 
mix of functional units is covered in Section III. TradeoRs 
in the design of the front end (prefetch and dispatch unit) 
as well as in the back end (caches, load buffer, store buffer, 
etc.) are explained in Sections IV and V. System intercon- 
nect design decisions are described in Section VI. Finally, 
Section VI1 describes the reasoning behind implementing 
multimedia functions (the visual instruction set (VIS)) on- 
chip. 

11. EXECUTION MODEL 
The execution model of a processor has a major impact 

on the whole design process. Not only does the execution 
model define the backbone of the pipeline, but it also 
affects the cycle time of the machine, the complexity of 
validating the logic, the time to tapeout, the die size, etc. 
In order to study which execution model would be best for 
UltraSPARC-I, we investigated a variety of proposals, each 

with a certain degree of “out-of-orderness.” For instance, 
given a not-to-exceed die size in a 0.5 pm technology 
(around 315 sq mm), an aggressive out-of-order execution 
processor with a unified 64-deep window was thoroughly 
simulated. Similarly, several instances of a fast superscalar 
processor with a simple in-order execution model were 
simulated. 

In general our simulations showed that an out-of-order 
superscalar processor achieved an instructions per cycle 
(ET) around 30% higher than a strict in-order machine of 
comparable width, when simulating “old” integer code. In 
recent years, advances in optimizing compilers, in particular 
global code motion, have allowed in-order machines to 
close the gap between what an out-of-order machine can 
achieve (in terms of IPC). Compilers have the luxury of 
being able to look at a window of instructions larger than 
what can be achieved in today’s hardware technology (up 
to 64 instructions [4]), which means that more aggressive 
code motion can be done. Trace scheduling [6], [7] and 
superblocks [SI are two examples of global code motion 
techniques. Simple architecture additions, such as specu- 
lative loads 1221 and a nonblocking memory subsystem 
were added to UltraSPARC-I in order to make it worthwhile 
for the compiler to hoist instructions so that part of their 
latency, or even their full latency, can be hidden. The 
combination of profile feedback optimizations and novel 
static branch prediction heuristics [9], achieving in some 
cases accuracy greater than 80%, mean that an optimizing 
compiler can perform code motion on the most likely 
instruction path. For nondeterministic events, such as cache 
misses, the compiler can generate code assuming that the 
latency of an access will not hit the first level cache (but will 
hit the second level). Through microarchitecture support 
for a nonblocking memory subsystem (e.g., scoreboarded 
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loads) the hardware can deliver data at the same rate as 
if the data had been in the first level cache and can do 
so while completely hiding the load latency. Transforming 
nondeterministic events into deterministic ones is also pos- 
sible. For instance, software prefetch can be used so that 
data is most likely in the first level cache. 

Given that current generation machines are significantly 
different from the previous generation, recompilation seems 
to be necessary for maximum performance even for an out- 
of-order machine. SPEC92 numbers published by vendors 
have increased significantly with newer binaries [4]. Sim- 
ulation of recompiled code and simulations of rescheduled 
code [14] (more in Section 111), indicate that the IPC 
difference between an in-order machine and an out-of- 
order one on SPECint92 would only be 15% if aggressive 
cross block scheduling is used. For scientific computing, 
where instruction level parallelism (ILP) is easier to ex- 
ploit, we did not notice any significant advantage. Well 
known compilation techniques, such as software pipelining 
[11] can generate optimized code which is not improved 
through hardware reordering. Similarly, applications which 
rely heavily on indirect data references (e.g., database 
applications) did not see a gain in IPC from out-of-order 
execution. 

The impact of the more complex out-of-order logic 
on cycle time was also evaluated. For instance register 
renaming, typically accomplished through an associative 
lookup or through a mapping structure, affects the register 
file access time if tied to the same pipeline stage [4], or 
alternatively, an extra stage in the pipeline may be required 
[ 5 ] ,  resulting in a loss of 2 4 %  on SPECint92 depending 
on the branch prediction scheme used. The instruction 
selection logic in a unified window scheme is complicated 
by the fact that the processor must recover quickly when 
a misprediction or a trap occurs. Selecting one of 64 
instruction, or two out of two banks of 32 instructions, 
is an operation that exists only in out-of-order processor. 
Large fanouts on result buses and complex logic for picking 
the “right” instruction (selecting instructions influencing 
the height of the dependency graph) was evaluated to 
be a cycle time limiter. Finally the unit responsible for 
retiring instructions in order so that precise exceptions 
be supported also impacts cycle time since it typically 
requires more write ports into the register file than an 
in-order machine, so that a burst of instructions can be 
retired quickly. Otherwise, an unbalanced machine creates 
excessive resource overflows (e.g., queues full, out-of-ports, 
etc.), delivering less performance. Complex FIFO structures 
required for the retirement logic have been described in 
various papers [12], [13]. A simplified in-order execution 
machine renders these structures unnecessary. 

Considering the critical paths above and accounting for 
the fact that more logic is required, resulting in a larger 
die, we estimated a global impact on cycle time of around 
20%. For a 0.5 pm technology this represents the difference 
between 167 MHz (our goal for UltraSPARC-I) and 133 
MHz. For a 0.35 pm technology, the difference is 50 MHz 
(250 MHz versus 200 MHz). 

Finally, another key criteria that must be considered when 
comparing two architectures is the impact on schedule. The 
performance of microprocessors since the early days has 
steadily increased at a rate of 1.5-1.6 per year (around 2 x 
every 18 months), or around 4% per month. Because of the 
additional complexity, larger die, greater pressure on cycle 
time, etc., we evaluated that implementing an out-of-order 
machine would cost us between 3-6 months. Additionally, 
bring up time, due to more complex testing and functional 
verification, would be lengthened. Bringing a processor 
to market 3-6 months later represents a performance loss 
equivalent to 12-26%. 

UltraSPARC-I dispatches and executes instructions in the 
same order as they appear in the code. Every cycle, the 
grouping logic dynamically computes how many of the 
top four instructions sitting in the instruction buffer can be 
dispatched to the functional units. Instructions are allowed 
to complete out-of-order so that long latency operations can 
be bypassed by shorter ones. For instance, loads to the data 
cache, to the external second level cache, or to main mem- 
ory are allowed to finish out-of-order with respect to other 
classes of instructions such as integer operations, floating- 
point instructions, etc. Similarly, floating-point divides and 
squareroots can finish out-of-order with respect to all other 
instructions. 

The completion unit allows instructions of different la- 
tencies to update the register file in an orderly manner, 
thus presenting a precise state to the operating system 
when an exception or interrupt occurs. Exceptions related to 
loads, such as TLB misses, unaligned accesses, protection 
violation, are all detected at the beginning of the pipeline. 
The only error not accompanied by precise state is due to a 
parity error, but in this case recovery is not possible since 
the operating system terminates the process anyway. 

The UltraSPARC-I execution model, while maintaining 
the simplicity of an in-order execution machine, takes ad- 
vantage of a nonblocking memory system and scoreboarded 
loads in order to hide long latencies operations. The addi- 
tional gain in IPC ( ~ 1 5 % )  obtained from a more complex 
out-of-order execution model is more than offset from the 
benefit in clock rate (-20%) and schedule (-12-26%). 

111. ISSUE-WIDTH AND FUNCTIONAL UNITS MIX 
UltraSPARC-I is a four-way superscalar unit. Every cy- 

cle, groups of 0, 1, 2, 3, or 4 instructions can be issued 
to the nine functional units residing on the chip. The 
issue-width and the functional unit mix have a large in- 
fluence on the CPI and cycle time of a machine, therefore 
their selection must be backed by extensive simulations. 
Simulations of possible configurations for UltraSPARC-I 
ranged from a uniscalar machine to a 5-scalar machine. For 
each configuration, various mixes of functional units were 
simulated and the full SPEC92 benchmark suite as well as 
large applications such as Hspice, database traces, verilog, 
etc., were run to quantify the impact on performance. This 
methodology is very similar to the one recently described 
in [15], except that we also investigated the impact of 
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Table 1 Improvement Over an Uniscalar Machine 
Issue-width Code compiled Rescheduled code 

for uniscalar for target processor 
uniscalar (normalized) 1x 1x 

2-scalar 1.14X 1.46X 
3-scalar 1.26X 1.78X 
4-scalar 1.33X 1.83X 

64-b integer ALU 

Table 2 Speedup Obtained by Adding an ALU 
Issue-width I Code compiled for I Rescheduled code for 

2 

uniscilar target machine 

target specific code (while an out-of-order machine was 
considered in [15]). As shown in Table 1, under the column 
labeled “Code compiled for uniscalar,” the improvement on 
existing code over a uniscalar machine €or a 2, 3, and 4- 
scalar machine is 14%, 26%, and 33%, respectively, over 
a uniscalar processor for SPECint92. 

An important factor to consider when measuring such 
variations is which compiler is used to generate the binaries 
feeding the simulation. The numbers shown in the first 
column in Table 1 were obtained from binaries generated 
for a uniscalar processor. A compiler which has knowledge 
of the underlying machine can generate code tailored to the 
width of the machine. Optimizations such as reorganization 
of the order in which the instructions appear, predicated 
execution, as well as cross block scheduling translate into 
significant gains for superscalar processors [IQ]. In order 
to measure how much performance could be gained for 
each configuration with optimized code, we developed a 
“rescheduler.” The rescheduler has the capability to look 
at a large window of instructions (128, 256, 512, etc.) 
generated from a trace and can regenerate an optimized 
trace by moving instructions by tens of positions while still 
respecting data dependencies. Several parameters can be 
set to bound the code motion. For example, the number 
of branches allowed to be passed can be limited. In this 
way, aggressive compiler optimizations can be simulated 
in a much easier manner than by modifying the compiler. 

Using the rescheduler, we tailored binaries for each 
configuration in Table 1 and obtained a much better im- 
provement as shown in the same figure under the label 
“rescheduled code.” The speed-ups reached are 46%, 78%, 
and 83% for a 2, 3, and 4-scalar machine, respectively. 
Based on such simulations and based on analysis of the 
impact of the issue-width on critical paths, we set the issue 
width of UltraSPARC-I at four. 

Similar experiments were conducted to determine the 
functional unit mix. An example is given in Table 2. The 
improvement obtained from adding a second integer ALU 
for a 2-scalar and 3-scalar machine is shown for both 
existing and rescheduled code. 

The improvement on the code scheduled €or a uniscalar 
processor is 6% for the 2-scalar machine and 13% for 
the 3-scalar machine. For rescheduled code, the gain is 

3-scalar 

Table 3 Functional Units on UltraSPARC-I 

1.13X 1.25X 

Load/Store 
Branch 
Floating-point adder 
Floating-point multiplier 
Floating-point dividedsquare root 
Graphics adder 1 

1 

instruction 12 
Buffer Entry 

Dlspatch 

Instructions 

Fig. 3. UltraSPARC-I front-end. 

doubled to 12% and 25%, a much more attractive benefit. 
This methodology was used to arrive at the current mix of 
functional units shown in Table 3. 

rV. FRONTEND 
The front end consists mainly of the instruction cache, 

the branch and target prediction mechanism, the instruction 
translation lookaside buffer (ITLB), the instruction buffer 
and the dispatch unit (Fig. 3). 

A. Instruction Cache 
The instruction cache (I-cache) is somewhat unique in its 

organization. It is described as 16 kB in size, if one counts 
a SPAFX instruction as 4 bytes. However, stored with each 
instruction in the I-cache are predecoded bits that are used 
for instruction fetching. The I-cache has qualities of both 
a direct-mapped and a two-way set-associative cache. It 
can be considered two-way in that a particular address can 
be present in two different locations in the cache. It is 
considered direct-mapped in terms of access time in that 
the “set” to access is predicted ahead of time, so there is 
no comparison function in the access path. This is a cycle- 
time and power dissipation advantage in that only one set is 
accessed. The “set” prediction bit is obtained from the Next 
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Field RAM, explained in Section IV-B. In the rare case of a 
set mispredictions, a two-cycle fetch penalty occurs, which 
does not necessarily translate into a loss of performance 
due to the instruction buffer. This approach also allows 
the I-cache to be both physically indexed and physically 
tagged, simplifying coherence issues. The I-cache line size 
is 32B (eight instructions); there is no subblocking. An I- 
cache fill takes two clocks since the interface to the rest of 
the memory system is 16B wide. 

B. Branch Direction and Branch Target Prediction 
Every cycle up to four instructions can be prefetched 

from the instruction cache and sent to the instruction 
buffer. Each line in the I-cache contains eight instruc- 
tions (32 bytes). Every pair of instructions has a 2-b 
branch prediction field (Fig. 4) which maintains history of 
a possible branch in the pair. The four prediction states 
are the conventional strongly taken, likely taken, strongly 
not taken, and likely not taken [16]. The advantage of 
the in-cache prediction scheme is that it avoids the alias 
problems encountered in branch history buffer and other 
similar structures [17]. Implemented in this way, every 
single branch in the I-cache has its dedicated prediction bits 
(ignoring the rare case of branch couples), which translates 
into a high successful prediction rate of 88% for integer 
code, 94% for floating-point (SPEC92), and 90% for typical 
database applications. 

Every group of four instructions in the cache also has 
a “next field” (Fig. 4) which is simply a pointer to where 
the prefetcher should access instructions for the very next 
cycle. In the case of sequential code or for code with a 
branch predicted not taken, the next field points to the next 
four instructions in the cache. The next field will contain 
the I-cache index (including the set) of the branch target if 
a branch is predicted taken. The advantage of this scheme 
is that the next field can always be fed back to the I-cache 
without qualifying a possible branch thus saving levels of 
logic. The next field mechanism is capable of handling 
a branch every cycle even if previous branches haven’t 
been resolved. Due to the four cycle branch resolution 
latency, UltraSPARC-I can speculate five branches deep 
(including the branch being resolved) representing up to 
18 instructions. 

IO I1 BP 12 13 BP 

V. MEMORY SUBSYSTEM 
The memory hierarchy consists of the instruction cache 

(I-cache), data cache (D-cache), and external cache (E- 
cache). The load buffer and store buffer provide an interface 
between the Integer and Floating-point functional units 
and the memory system for data references. There is 
both an instruction and data memory management unit 
(IMMU and DMMU) which provide dedicated virtual- 
to-physical address translation for instruction and data 
references, respectively. 

A. MMU’s 
UltraSPARC-I supports a 44-b subset of the full 64- 

b virtual address space. This reduction was done due to 

NFA 

Fig. 4. Logical line in the instruction cache. 

both die size limitations and timing impacts. UltraSPARC-I 
would have been approximately 3-5% larger to support a 
64-b virtual address as this affects not only the MMU’s, but 
also affects instruction fetching, branch resolution, and trap 
recording datapaths. Additionally, one of the top critical 
paths in the machine involves the generation of the virtual 
address in the E-stage of the pipeline (Fig. 2) through a 
fast, dynamic adder and distribution to other parts of the 
chip (the branch unit for register-based control transfer 
instructions (CTI’s), the D-cache and D-cache tag RAM’S 
for data references, the Data TLB for virtual-to-physical 
address translations). So, even though all 64 b are generated 
in order to check that the address is not out-of-range, there 
is no need to distribute the upper 20 b, nor optimize their 
timing. From the OS point-of-view, 44 b of virtual space 
are sufficient for the lifetime of the processor. 

Each MMU has a 64-entry, fully associative TLB which 
can perform one address translation per cycle. Four page 
sizes are supported: 8 kB, 64 kB, 512 kB, and 4 MB. 
Larger page sizes are useful in mapping large contiguous 
regions of memory like U 0  space, frame buffers, and 
parts of the kernel. Without them, we are only able to 
map 1 MB (128 * 8 kB) of physical memory, which 
would otherwise degrade performance of larger External 
caches (e.g., 75% of a 4 MB E-cache would be accessible 
at any given time only after taking a TLB miss). We 
considered set-associative approaches for the TLB’s, but 
found it difficult to conveniently support multiple page 
sizes without having dedicated TLB’s for the larger pages. 
The Instruction and Data TLB’s are identical mainly to 
minimize the design resources required, and the number 
of entries was chosen based on performance analysis on a 
wide range of benchmarks. 

TLB misses are mainly handled in SW as fast traps, 
with a fair bit of HW support provided in the MMU’s. 
This decision was made for two main reasons: 1) offer the 
flexibility of a software solution to the operating system 
so that various paging mechanisms can be supported, and 
2) prior experience with hardware TLB miss processing 
showed it to be complex, prone to bugs, and difficult to 
verify. 

B. Data Cache 
The D-cache is a 16 kB direct-mapped cache. It has a 

32B line size, with 16B subblocks. It is virtually indexed 
and physically tagged. It operates on a write-through, no 
write-allocate policy. It is nonblocking so that D-cache 
misses and other conditions which delay memory operations 
(specifically loads) do not necessarily penalize subsequent 
instructions. 

We chose a direct-mapped design for simplicity, fastest 
access time, and low latency, which results in a 1-cycle 
load-use penalty. These advantages, combined with an ag- 
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gressive extemal cache implementation, offset the slightly 
higher performance that can be obtained though a set- 
associative cache. Once we decided to implement a direct- 
mapped design, our choice of cache sizes was limited to 
powers of 2 (e.g., 8 kB, 16 kl3, 32 kB, etc.) and here 
die size limitations were decisive. Due to the 8 kB page 
size, the D-cache must be virtually indexed so as not to 
wait for the TLB to produce the extra physical address bit. 
We depend on the OS to not create virtual aliases through 
its page mapping scheme, so the only complexity comes 
from maintaining cache coherence with the E-cache and 
other processors. In such cases, a purely physical address 
is provided and used to interrogate both possible "virtual" 
locations. This requires slightly more bandwidth, but since 
the D-cache obeys the principle of inclusion with respect 
to the E-cache, this is an acceptable tradeoff. 

Performance simulations indicated that a 16B line size 
was optimal, but area constraints forced us to implement 
a 32B line size, with 16B subblocks, basically halving the 
size of the D-cache tag RAM. Given that the interface to 
the D-cache is 16B wide, we are able to do a subblock fill 

Fig. 5, Interaction of the load buffer and store buffer with the 
D-cache E.cache, 

every cycle. 
We chose a write-through, no write-allocate policy over 

a strict write-back or variations which combined write- 
througldwrite-back policies via modes or on a page-by-page 
basis. We judged the write-through design to be of much 
less complexity and pose fewer risks for a bug-free design. 
There are three main reasons why a write-through design 
was acceptable on UltraSPARC-I: 

Lines in the D-cache are always clean, which means 
that when loads are scheduled for the latency of the E- 
cache and bring data in the D-cache every cycle, dirty 
victims do not have to be flushed back to the next level. 
Sustaining one load per cycle to the external cache was 
a key design requirement for UltraSPARC-I in order 
to run large applications fast. 
An E-cache must be present (i.e., there is no option 
to run UltraSPARC-I with primary caches only). This 
means that Stores need not be reflected on the memory 
interconnect and that memory does not have to do 
read-modify-write operations. 
The E-cache is pipelined so that one operation (either 
load, store, or instruction fetch) can be completed 
every cycle. This, combined with techniques to be 
discussed later, provides sufficient store bandwidth to 
reflect all stores to the E-cache. 

The D-cache tag RAM is dual ported, unlike the data 
RAM, which is single-ported. It has two independent ports: 
a read port and a reauwrite port. Providing two ports 
allows a tag look-up to occur for a younger load or store 
in parallel with a D-cache fill for an outstanding miss or an 
invalidation (e.g., due to an external snoop). This basically 

chose to implement such an execution model in an effort 
to hide as much of the memory latency as possible. This 
scheme is less attractive in single-scalar designs, but in 
UItraSPARC-I every clock cycle the machine is waiting for 
a load to complete means that up to four instructions could 
not start execution. Thus loads are completed out-of-order 
with respect to subsequent instructions which do not depend 
on the load result. We chose not to allow load operations to 
r e m  out of order with respect to other load, mainly due 
to complexity and cycle time reasons. 

If a Load cannot be returned immediately from the D- 
cache, it is placed on the load buffer (Fig. 5) .  This typically 
for D-cache misses, but can also occur for read-after-write 
hazards, noncacheable references, nonperformance critical 
instructions, and other reasons. Nine entries were imple- 
mented so that the machine could maintain a throughput 
of one load per cycle, even in the presence of D-cache 
misses (assuming an E-cache hit). This is an attractive 
feature, especially for most Floating-point loops and other 
latency toPerant algorithms, as the compiler can schedule 
instructions for the longer E-cache latency, 
the much shorter D-cache latency. This effe 
such programs to perform as if they were running out of a 
very large primary cache. We made no effort to cover the 
latency to main memory since such accesses are usually 
infrequent due to the effect of the much larger external 
cache. Additionally, scheduling code to do useful work in 
the 20-40 cycles behind an E-cache miss is quite difficult 
(the E-cache is nonblocking but only one E-cache read miss 
can be outstanding) 

allows the pipeline to process 1 load per cycle from either 
the D-cache or the E-cache. 

C. Load Buffer 
The Load Buffer is a nine-entry FFO-style queue that 

enables the machine to support nonblocking loads. We 

D. Store Buffer 
The Store Buffer is an eight-entry FIFO-style queue that 

provides a temporary holding place for store operations 
until they are "committed" and can update the D-cache 
and/or E-cache. Each entry holds a 64-b datum, as well as 
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its corresponding physical address and control information. 
The Store Buffer was required to have enough storage for 
64 b of data, in order to support the Visual Instruction 
Set’s Block Store operations. Thus eight entries was the 
minimum. Simulations indicate that additional entries did 
not give a noticeable performance boost, given some of the 
features described below. 

Given that the D-cache is write-through, all cacheable 
stores must be reflected to the E-cache. Unlike loads, 
stores are done in two steps: first, the E-cache is checked 
for hidmiss; second, the E-cache is updated with the 
appropriate data. The E-cache tag and data RAM’S are 
decoupled (i.e., they are tied to separate address and data 
wires) so that a tag check can occur in parallel with the 
E-cache data update of an older store (Fig. 5). Since the 
E-cache tag check can be started as soon as the physical 
address is available, we are typically able to maintain a 
throughput of one store per clock. 

There are several additional techniques that we use to 
minimize both E-cache tag and data RAM bandwidth 
requirements. The tag check and data write for a particular 
store are not explicitly synchronized, which allows for 
some variation in access patterns. To support this, the E- 
cache hidmiss indication is queued in the Store Buffer 
for eventual use. In the rare case that the state of the E- 
cache line is changed before the store can be completed, 
the tags are simply reaccessed. Additionally, consecutive 
stores to the same E-cache line (64 b) typically require 
only a single tag check, further reducing needed tag check 
bandwidth. Lastly, a compression feature is implemented 
which combines the last two Store Buffer entries into a 
single operation if they target the same 16 b subblock. There 
are no restrictions as to memory alignment nor on how 
many entries can be combined into a single operation. Thus 
data write transactions can be minimized significantly. This 
feature came mostly for free since it was already necessary 
to be able to expand 64-b store operations to the 128-b 
width of the interface to the E-cache. 

D. External Cache 
The E-cache lies between the primary caches (I-cache and 

D-cache) and main memory. It is direct-mapped and both 
physically indexed and physically tagged. E-cache sizes 
between 512 Kb and 4 Mb are supported. It operates on 
the expected write-back, write-allocate policy. The 64-b 
line size (no subblocking) and modified, own, exclusive, 
shared, invalid (MOESI) coherency algorithm were chosen 
based on system considerations which are discussed later. 
All E-cache control is handled on chip, while the tag and 
data arrays are implemented in fast, synchronous SRAM’s. 

The I-cache and D-cache are always kept consistent 
with the E-cache, thus obeying the principle of inclusion. 
Inclusion, as well as the fact that the D-cache operates on 
a write-through policy, means that the E-cache can act as a 
filter for cache coherent requests from other processors or 
VO devices, thus reducing the load on the primary cache 
and eliminating the need for duplicate tag arrays. Since the 

Fig. 6. External cache pipeline. 

D-cache cannot hold “dirty” data, the latency to access data 
in another processor’s cache is minimized. 

A virtually indexed E-cache was considered briefly, as 
this hypothetically allows an access to begin a cycle earlier 
in the pipeline (i.e., before the TLB translates from virtual 
to physical address). This was rejected for a variety of 
reasons. For one, E-cache accesses would have to speculate 
that a D-cache miss would occur in order to gain an extra 
cycle; too much speculation produces extra bandwidth on 
the E-cache bus preventing other nonspeculative requests 
from being executed, too little speculation reduces the 
benefit. Second, it requires the OS to manage virtual page 
aliases on E-cache size boundaries. Third, it complicates 
the cache coherency problem by requiring duplicate and/or 
extra virtual address bits to be passed around on the 
interconnect. 

We chose to implement a direct-mapped design over 
2, 3, or 4-way set-associative approaches. As mentioned 
earlier with respect to the D-cache, there is a tradeoff of 
complexity and latency versus hit rate, although in this case 
response to cache coherency traffic is also a consideration. 
It is well known that the performance of direct-mapped 
caches is more susceptible to the allocation of memory 
space and virtual-to-physical address mapping [ 181. On the 
other hand, the complexity (added pins) of fetching multiple 
tags from external SRAM’s or the added circuitry needed 
to predict the set [4] was not attractive especially since in 
the latter case, the penalty for mispredicting the way can 
offset the performance advantage of an associative cache 
(seven cycles for the MIPS R10000). 

The additional latency for an access that misses in an 
internal cache (I-cache or D-cache) and hits in the E-cache 
is six cycles. For a 166 MHz processor, 6 ns, synchronous 
SRAM’s are used, allowing a throughput of 1 read or write 
per cycle, which is crucial to supply the bandwidth required 
by the internal caches and cache coherency traffic in SMP 
configurations. Both tag and data arrays use an identical 
SRAM, which simplifies timing analysis and reduces cost. 
There is a penalty when switching from reads to writes as 
a dead cycle is inserted on the bidirectional E-cache bus to 
avoid electrical issues with overlapping drivers. The SRAM 
includes a one-entry delayed write buffer which reduces 
this penalty by one clock cycle. Additional entries in this 
write buffer could have reduced the penalty to zero cycles, 
but SRAM vendors were unwilling to modify “commodity” 
type parts within an acceptable cost structure. The E-cache 
pipeline is shown in Fig. 6. One should note that the AD, 
AC, and DT stages occur off-chip, while the RQ and TC 
stages occur on-chip. 

Both data and tag arrays are protected with byte parity. 
Due to the high reliability of SRAM’s, ECC protection 
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was judged unnecessary. Reasonable ECC (e.g., for a 64-b 
word) requires a read-modify-write for any write smaller 
than a word, a major performance bottleneck (e.g., for 
writing pixel data). 

VI. THE ULTRASPARC PORT ARCHITECTURE (UPA) 

A. Pin Allocutions 
Chip level interfaces are driven by hard physical con- 

straints. Given our die size goal, and use of standard U 0  
pads and BGA packaging technology, a total of around 320 
I/O signals were deemed available (UltraSPARC-I ended up 
having 333 signal pins and 187 power and ground pins). 

A 64-b E-cache interface with a 64-b shared addresddata 
system interface was originally considered. Simulations in- 
dicated that large applications, graphics routines, as well as 
functions used in network protocols (e.g., check summing 
large amount of data) would quickly saturate such a bus. 
These performance effects, although not fairly represented 
by SPEC92 benchmarks, are critical for real-world ap- 
plications. The goal for the system interface was simple: 
increase performance for a wide range of user applications 
by minimizing latency and maximizing throughput for both 
memory and noncacheable transactions 1191. No easy goal 
when one usually comes at the expense of the other. 

A wide 144-b E-cache data interface for low latency LP 
cache fill was chosen. That needed to be coupled with a 
wide path to memory to keep E-cache fill and evict time 
low. Keeping the E-cache bus busy twice as Bong for these 
events (with a narrower bus) would eventually stall the 
processor otherwise, since L1 and E-cache misses tend to 
occur in bursts. 

An E-cache built out of SRAM’s with two bus ports 
(one port for the processor, one port for the system) was 
rejected due to its high cost and lack of availability. The 
other alternative, adding another wide 144-b bus on the 
processor was also rejected due to lack of signal pins 
available. The solution was to connect the external cache 
to memory without going through the processor, by adding 
two cheap external buffer chips (Fig. 7 and Section VI-B). 
It was critical that this addition did not impact our ability to 
run the fully pipelined E-cache at the processor clock rate. 
This separate path for data resulted in a relatively small 
number of pins on the processor for the system interface. 
A separate system address bus allows us to send address and 
data in parallel to the system, which is especially important 
for sustaining high throughput to graphics subsystems. 

Thirty-seven pins are used for the system address, ten 
for handshaking on requestheply handshaking, five for 
arbitration, five for controlling the buffers, and four for 
ECC reporting. The first cycle of the address packet sends 
all bits necessary for initiating the RAS cycle at the DRAM. 
The address packet includes a 16-b byte enable field, which 
is useful for efficiently supporting random pixel writes to a 
graphics frame buffer. A distributed arbitration protocol is 
used on the address bus, saving cycles on every transaction, 
compared to an external arbiter. Even though the system bus 
is packet switched, there is no arbitration for, or use of, the 

I Cache 

Fig. 7. System interface for UltraSPARC-I. 

address bus when returning a data packet. Separate radial 
wires provide the necessary handshake for completing data 
transfers. 

The separate address bus keeps data bus utilization lower, 
which helps minimize the average latency for E-cache fills 
for both uni- and MP systems. Bus contention increases 
latency, which has a cumulative negative throughput effect. 
Longer latency usually results in increased distance between 
requests, due to program data dependencies. The difference 
between “peak” and “realized” bandwidth for many sys- 
tems has traditionally been caused by long latencies for 
individual events. 

B. UltraSPARC Data Buffer (UDB) 
Usage of external buffers allowed us to add FIFO’s and 

ECC checwgenerate logic without area or latency penalty. 
The UDB’s are pad limited, making “extra” active area 
available, and data transfers take one system clock to pass 
through. So ECC can be computed here, for “free.” For 
cost reasons, the UltraSPARC Data Buffer consists of two 
ASIC’s. Since the rest of the system was built from similar 
ASIC‘s, the UDB does not need the additional performance 
of a full semicustom design. 

We looked at running the UDB with two clocks, but 
decided to only use the system clock for simplicity. Move- 
ment of store data into the UDB is under processor control, 
at which point unloading it is the responsibility of the 
system. Queues are used to hide the latency inherent in 
backflow control signals from the subsystem receiving the 
data. ”his allows UltraSPARC-I to sustain the peak data 
bus bandwidth for noncacheable stores to frame buffer, 
for example. In addition, buffers are available for E-cache 
fill, E-cache writeback, 64-byte block stores, and E-cache 
copybacks on behalf of other cache-coherent requestors. 

C. Flexible Interconnect for Low Cost Uniprocessors, 
High PerjGomnce Multiprocessor Systems 

In order to keep snoop latency low and predictable for 
multiprocessor systems, a duplicated set of the external 
cache tags can be tightly coupled to the system controller 
so that only snoop hits are sent to the individual processors. 
MP systems without dual tags like these can see their 
performance decrease as traffic increases. The average 
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latency for snoops can increase, because of collisions 
with processor access to the E-cache tags. which causes 
the average memory read latency to increase. Also, some 
systems end up being throttled by limited throughput when 
snooping the E-cache tags. Having dual tags eliminates 
these problems, providing consistent high throughput and 
low latency. 

Uniprocessors can work without dual tags due to the low 
snooping traffic. Only cache coherent IO activity requires 
snooping the E-cache tags. UltraSPARC-I was designed to 
support systems with and without dual tags. 

UltraSPARC-I targets a wide range of designs, so a 
flexible system interface was important. As processors 
integrate more and more system functions, it is easy for 
the unwary to hardwire some interface behavior that makes 
implementations of SMP and MPP systems difficult. For 
instance, UltraSPARC-I doesn’t snoop addresses on the 
shared bus. This would force an ordering of coherency 
events dependent on their arrival on that single shared 
address bus. The processor only receives snoop requests 
after the system decides the processor cache needs to be 
invalidated, or needs to provide the data. Dual tags or 
directories can be used to make this decision. 

Uniprocessor systems with cache coherent IO DMA can 
interrogate the processor cache for every DMA to memory 
though. The overall IO DMA bandwidths don’t cause 
much E-cache bandwidth to be lost, and the processor 
responds fast enough to not impact the deliverable IO DMA 
bandwidth. 

D. Many Outstanding System Events 
The current implementation of the UPA supports eight 

outstanding noncacheable stores, enough to offset the la- 
tency for returning a handshake signal indicating an entry 
has been unloaded from the input queue in the system, 
without creating a bubble in peak data delivery. 

There can also be two outstanding block stores, one 
outstanding writeback, and one outstanding E-cache miss. 
The external cache control unit keeps track of three E-cache 
misses internally, so there is a fair amount of overlap in E- 
cache miss processing. Only the processor pin-to-pin delay 
is serialized for an E-cache miss from a single processor. 

Given the latency inherent in a typical memory system, 
UltraSPARC-I can demand over 350 Mbytes of memory 
bandwidth. Adding 175 Mbytes of writeback bandwidth 
creates the need for a wide banked memory. The 16-byte 
wide UPA data bus running at 83 MHz can accommodate 
several processors by delivering 1.3 Gbytes of data to 
clients. 

VII. MULTIMEDIA SUPPORT 
Graphics speed has a big effect on a workstation user’s 

perception of performance. Graphics functionality is grow- 
ing increasingly more sophisticated including desktop video 
for teleconferencing and broadcast quality viewing, 3D vi- 
sualization and animation, image manipulation for desktop 
publishing, etc. 

ddresses 

Compietlon Unit 

Fig. 8. Floating-point and graphics unit. 

Up until now, specialized graphics hardware was required 
for these applications. Typically, additional functionality 
could be provided to the base machine by adding one or 
more graphics cards. For example, MPEG-1 decompres- 
sion could be achieved by adding one card, while 3D 
visualization could be supported by adding another card. 
Implementing support for these applications directly on the 
processor may remove the need for additional graphics 
cards, leading to better overall system cost and freeing 
precious 1/0 slots. 

The lack of a standard platform that supports these 
features has hindered the development of multimedia ap- 
plication software. With UltraSPARC-I, we saw an oppor- 
tunity to provide a standard multimedia capability for future 
SPARC systems with only a 3% increase in the die area. The 
30 new instructions from the visual instruction set (VIS) can 
be used as other RISC instructions on UltraSPARC-I. There 
is no need to perform memory mapped I/O or to access 110 
devices. 

Implementing VIS on the processor also means that the 
performance scales with frequency upgrades. Typically, 
processor frequency follows an aggressive curve due to 
gate shrinks and/or full process shrinks. These are typically 
not available or do not improve as rapidly on ASIC’s. 
Scaling also appears in multiprocessor systems. Many mul- 
timedia applications lend themselves well to multithreading, 
which can attain, in the ideal case, linear speedup with N 
processors. 

Multimedia instructions are executed by two specialized 
execution units in the floating point datapath (See Fig. 8). 
These RISC style instructions provide the core operations 
needed by multimedia algorithms. Specific algorithms such 
as MPEG are implemented by software libraries using these 
instructions. The execution units are fully pipelined so that 
each cycle 2 VIS instructions can be issued. 

The execution units were added to the floating-point 
unit mainly for four reasons. First, more registers are 
available because graphics data can be stored in all 32 
FP registers while addresses and loop counts are stored 
in the integer registers. Second, floating-point units are 
typically not used concurrently with VIS instructions, which 
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means that the issue slots that would normally be used for 
floating-point instructions can be used for VIS instructions 
allowing the maximum parallelism to be achieved (four 
instructions per cycle). Third, some instructions have a 
latency of three clocks which fits naturally into the floathg- 
point pipeline design. Fourth, the basic cycle time of the 
machine is based around key datapaths components dictated 
by the integer side of the processor (e.g., &U’s, data 
cache access, etc.). Implementing VIS instructions on the 
integer side would have introduced extra gate levels in the 
adder (allowing intermediate carries to propagate for normal 
adds), it would have added new functional units (e.g., four 
signed multipliers), and more bypasses into critical muxes 
would have been needed. 

A complete description of VIS is given in [20] while its 
usage for a broadcast quality MPEG player is described in 
P11. 

VIII. CONCLUSION 
The realization of UltraSPARC-I required 5.4 million 

transistors for the circuits, 600 computers (1000 processors) 
for simulation, 2 Tbytes of disk space, 300 person-years, 
etc. While these “resources” contribute to making the 
implementation of a processor successful, the initial phase 
of the project, more precisely the architecture and mi- 
croarchitecture definition, have a large impact on not only 
how the processor will perform but also on how long 
the implementation will take and how expensive the die 
is going to be. In this paper we have presented how 
the microarchitecture of UltraSPARC-I was derived by 
presenting various proposals and alternatives that were 
investigated before settling on the final design. 
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