
44

On 8 July 2002, Intel introduced
the Itanium 2 processor—the Itanium archi-
tecture’s second implementation. This event
was a milestone in the cooperation between
Intel and Hewlett-Packard to establish the Ita-
nium architecture as a key workstation, serv-
er, and supercomputer building block. The
Itanium 2 processor may appear similar to the
Itanium processor, yet it represents significant
advances in performance and scalability. (Sha-
rangpani and Arora give an overview of the
Itanium processor.1) These advances result
from improvements in frequency, pipeline
depth, pipeline control, branch prediction,
cache design, and system interface. The
microarchitecture design enables the proces-
sor to effectively address a wide variety of com-
putation needs.

Table 1 lists the processor’s main features. We
obtained the Spec FP2000 and Spec CPU2000
benchmark results from http://www.spec.org
on 20 February 2002. We obtained the other
benchmarks from http://developer.intel.com/
products/server/processors/server/itanium2/
index.htm. This site contains relevant infor-
mation about the measurement circumstances.

Microarchitecture overview
Many aspects of the Itanium 2 processor

microarchitecture result from opportunities

and requirements associated with Intel’s Itani-
um architecture (formerly called the IA-64
architecture).2 The architecture goes beyond
simply defining 64-bit operations and register
widths; it defines flexible memory management
schemes and several tools that compilers can
use to realize performance. It enables parallel
instruction execution without resorting to
complex out-of-order pipeline designs by
explicitly indicating which instructions can
issue in parallel without data hazards. To that
end, three instructions are statically grouped
into 16-byte bundles. Multiple instruction
bundles can execute in parallel, or explicit stops
can break parallel execution to avoid data haz-
ards. Each bundle encodes a template that indi-
cates which type of execution resource the
instructions require: integer (I), memory (M),
floating point (F), branch (B), and long extend-
ed (LX). Thus, memory, floating-point, and
branch operations that can execute in parallel
comprise a bundle with an MFB template.

The Itanium 2 processor designers took
advantage of explicit parallelism to design
an in-order, six-instruction-issue, parallel-
execution pipeline. The relatively simple
pipeline allowed the design team to focus
resources on the memory subsystem’s perfor-
mance and to exploit many of the architecture’s
performance opportunities. Figure 1 shows the

Cameron McNairy
Intel

Don Soltis
Hewlett-Packard

THE ITANIUM 2 PROCESSOR EXTENDS THE PROCESSING POWER OF THE

ITANIUM PROCESSOR FAMILY WITH A CAPABLE AND BALANCED

MICROARCHITECTURE. EXECUTING UP TO SIX INSTRUCTIONS AT A TIME, IT

PROVIDES BOTH PERFORMANCE AND BINARY COMPATIBILITY FOR ITANIUM-

BASED APPLICATIONS AND OPERATING SYSTEMS.

ITANIUM 2 PROCESSOR
MICROARCHITECTURE

Published by the IEEE Computer Society 0272-1732/03/$17.00 2003 IEEE

core pipeline and the relationship of some
microarchitecture structures to the pipeline.
These structures include the instruction buffer,
which decouples the front end, where instruc-
tion fetch and branch prediction occur, from
the back end, where instructions are dispersed
and executed. The back-end pipeline renames
virtual registers to physical registers, accesses
the register files, executes the operation, checks
for exceptions, and commits the results.

Instruction fetch
The front-end structures fetch instructions

for later use by the back end. The front end
chooses an instruction pointer (IP) from the
next linear IP, branch prediction resteer point-
ers, or branch misprediction and instruction
exception resteer pointers. The front end then
presents the IP to the instruction cache and
translation look-aside buffer (TLB). These
structures are tightly coupled, allowing the
processor to determine which cache way, if
any, was a hit, and to deliver the cache con-
tents in the next cycle using an innovation
called prevalidated tags. This is the same idea
presented in other Itanium 2 processor
descriptions3 in the context of the first-level
data (L1D) cache, but here we discuss it in the
context of the instruction cache.

Prevalidated-tag cache design
Traditional physically addressed cache designs

require a TLB access to translate a virtual address
to a physical address. The cache’s hit detection
logic then compares the physical address with
the tags stored in each cache way. The serialized
translation and comparison typically lead to
multicycle cache designs. In a prevalidated-tag
cache design, the cache tags do not store a phys-
ical address; they store an association to the TLB
entry that holds the appropriate virtual-address
translation. In the Itanium 2 processor, when
the front end presents a virtual address to the
TLB, the cache’s detection logic directly com-
pares the identifier of the entry that matches the
virtual address, called the match line, with a
one-hot vector stored in the cache tags. The vec-
tor indicates which TLB entry holds the trans-
lation associated with the contents of that cache
way. This allows a fast determination of which
cache way of a set, if any, is a hit. The hit result
feeds into the way select logic to drive the cache
contents to the consumer.

The removal of the physical address from
the hit detection critical path is significant. It
provides an opportunity for a single-cycle
cache, but requires the TLB to be tightly cou-
pled with the cache tags. Another implication
is that a miss in the TLB also results in a cache
miss, because no match lines will be driven.
Moreover, the number of TLB entries deter-
mines the number of bits held in each way’s
tag and might limit the coupled TLB’s size.
Figure 2 shows how prevalidated tags tied to
a 32-entry TLB determine a hit.

L1I cache complex
The L1I cache complex comprises the first-

level instruction TLB (L1I TLB), the second-
level instruction TLB (L2I TLB), and the
first-level instruction cache (L1I). The L1I

45MARCH–APRIL 2003

Table 1. Features of the Itanium 2 processor.

Design
Frequency 1 GHz
Pipe stages 8 in-order
Issue/retire 6 instructions
Execution units 2 integer, 4 memory, 3 branch, 2 floating-point
Silicon
Technology 180 nm
Core 40 million transistors
L3 cache 180 million transistors
Size 421 mm2

Caches
L1 instruction Size 16 Kbytes

Latency 1 cycle
Protection Parity

L1 data Size 16 Kbytes
Latency 1 cycle
Protection Parity

L2 Size 256 Kbytes
Latency 5, 7, or 9+ cycles
Protection Parity or ECC*

L3 Size 3 Mbytes
Latency 12+ cycles
Protection ECC

Benchmark results
Spec CPU2000 score 810
Spec FP2000 score 1,431
TPCC (32-way) 433,107 transactions per minute
Stream 3,700 Gbytes/s
Linpack 10K** 13.94 Gflops
* ECC: error-correcting code

** Performed with four processors

TLB and the L1I cache are arranged as
required for a prevalidated-tag design. The
four-way set-associative L1I cache is 16 Kbytes
in size, relatively small because of latency and
area design constraints but still optimal. An
instruction prefetch engine enhances the
cache’s effective size. The dual-ported tags and
TLB resolve demand and prefetch requests
without conflict. The page offset of the virtu-
al-address bits selects a set from the tag array
and the data array for demand accesses. The
upper bits of the virtual address determine
which, if any, way holds the requested instruc-
tions. The tag and TLB lookup results deter-
mine a L1I hit or miss, as described earlier.

The 64-byte L1I cache line holds four
instruction bundles. The L1I can sustain a
stream of one 32-byte read per cycle to pro-
vide two bundles per cycle to the back-end
pipeline. The fetched bundles go directly to
the dispersal logic or into an instruction buffer
for later consumption. If the instruction
buffer is full, the front-end pipeline stalls.

The L1I TLB directly supports only a 4-
Kbyte page size. The L1I TLB indirectly sup-
ports larger page sizes by allocating additional
entries as each 4-Kbyte segment of the larger
page is referenced. An L1I TLB miss implies a
miss in the L1I cache and can initiate L2I TLB
and second-level (L2) cache accesses, as well as

46

ITANIUM 2 PROCESSOR

IEEE MICRO

Instruction decode and dispersal

M M M M I I F F B B B

IP
G

IP
G

R
O

T
E

X
P

R
E

N
R

E
G

F
P

1
E

X
E

F
P

2
D

E
T

F
P

3
W

R
B

F
P

4

Branch prediction

IP-
relative

prediction

Next
address

IP-relative address
 and return stack buffer

L1l
TLB

IA-32
engine

L2l
TLB

L1l
instruction

cache

Instruction-
streaming

buffer

Instruction buffer:
8 bundles (24 instructions)

Pattern
history

Pipeline
stages

Front
end

Back
end

FP
renamer

Integer
renamer

Integer
register file

FP
register

file

Register
stack engine

Scoreboard and
hazard detection

Branch

F
lo

at
in

g
po

in
t (

2)

P
ip

el
in

e
co

nt
ro

l

L2D
TLB

ALAT
32 entries

L1D
cache

Integer
multimedia

(6)

Integer
ALU (6)

L2
tags

L2
cache

L3
cache
and

system
interface

Hardware
page

walker

ALAT
TLB
IPG

ROT
EXP
REN

Advanced-load address table
Translation look-aside buffer
Instruction pointer generation and fetch
Instruction rotation
Instruction template decode, expand, and disperse
Rename (for register stack and rotating registers) and decode

REG
EXE
DET

WRB
FPx

Register file read
ALU execution
Exception detection
Write back
Floating-point pipe stage

Figure 1. Itanium 2 processor pipeline.

a transfer of page information to the L1I TLB.
The L2I TLB is a 128-entry, fully associative

structure with a single port. Each entry can
represent all page sizes defined in the architec-
ture from 4 Kbytes to 4 Gbytes. Up to 64
entries can be pinned as translation registers
to ensure that hot pages are always available.
In the event of an L2I TLB miss, the L2I TLB
requests the hardware page walker (HPW) to
fetch a translation from the virtual hashed page
table. If a translation is available, the HPW
inserts it into the L2I TLB. If a translation is
not available or the HPW aborts, an exception
occurs and the operating system assumes con-
trol to establish a mapping for the reference.

Instruction-streaming buffer
The instruction-streaming buffer augments

the instruction cache. The ISB holds eight L1I
cache lines of instructions returned from the L2
or higher cache levels. It also stores virtual
addresses that are scanned by the ISB hit detec-
tion logic for each IP presented to the L1I cache.
An ISB hit has the same one-cycle latency as a
normal L1I cache hit. Instructions typically
spend little time in the ISB because the L1I
cache can usually support reads and fills in the
same cycle. The ISB enables branch prediction,
instruction demand accesses, and instruction
prefetch accesses to occur without conflict.

Instruction prefetching
Software can engage the instruction

prefetch engine to reduce the instruction
cache miss count and the associated penalty.
The architecture defines hint instructions that
provide the hardware early information about
a future branch. In the Itanium 2 processor,
these instructions direct the instruction
prefetch engine to prefetch one or many L2
cache lines. The virtual address of the desired
instructions allocates into the eight-entry
prefetch virtual address buffer. Addresses from
this buffer access the L1I TLB and L1I cache
tags through the prefetch port, keeping
prefetch requests from interfering with criti-
cal instruction access. If the instructions
already exist in the L1I cache, the address is
removed from the address buffer. If the
instructions are missing, the prefetch engine
sends a prefetch request to the L2 cache.

The prefetch engine also supports a special
prefetch hint on branch instructions to initi-

ate a streaming prefetch. For these hints, the
prefetch engine continues to fetch along a lin-
ear path, up to four L2 cache lines ahead of
demand accesses. Software hints can explicit-
ly stop the current streaming prefetch or
engage a new streaming prefetch. The prefetch
engine automatically stops prefetching down
a path if a mispredicted branch resteers the
front end. The prefetch engine avoids cache
pollution through software hints, branch-
prediction-based cancellation, self-throttle
mechanisms, and an L1I cache line replace-
ment algorithm that biases unreferenced
instructions for replacement.

Branch prediction
The Itanium 2 processor’s branch predic-

tion performance relies on a two-level predic-
tion algorithm and two levels of branch
history storage. The first level of branch pre-
diction storage is tightly coupled to the L1I
cache. This coupling allows a branch’s
taken/not taken history and a predicted tar-
get to be delivered with every L1I demand
access in one cycle. The branch prediction
logic uses the history to access a pattern his-
tory table and determine a branch’s final
taken/not taken prediction, or trigger, accord-
ing to the Yeh-Patt algorithm.4 The L2 branch
cache saves the histories and triggers of
branches evicted from the L1I so that they are
available when the branch is revisited, pro-
viding the second storage level.

47MARCH–APRIL 2003

0

1

0

0

0

0

1

0

0

0

0

0

1

0

0

0

00 1 0

H
it

co
m

pa
ra

to
r

0

0

1

0

0

0

Virtual address 3

Virtual address 32

Virtual address 4

Virtual address 3

Virtual address 2

Virtual address 1

Way 2 Way 1 Way 2 Way 3 Way 4

CacheTLB

Figure 2. Prevalidated cache tags tied to the TLB determine a hit. The present-
ed virtual address is TLB entry 3. The TLB drives a match line indicating the
match to the hit comparator, which reads and compares the way’s tags
against this match line. The tag in way 2 matches the match line, so way 2 is
reported as a hit.

The one-cycle latency provides a zero-
penalty resteer for correctly predicted IP-
relative branches. The prediction information
consists of the prediction history and trigger
for every branch instruction, up to three per
bundle, and a portion of the predicted target’s
virtual address for every bundle pair. Because
the bundles share the target and the target may
not be sufficient to represent the entire span
required by the branch, there might be times
when the front end is resteered to an incor-
rect address. The branch prediction logic
tracks this situation and provides a corrected
IP-relative target one cycle later.

Return stack buffer and indirect branches
All predictions for return branches come

from an eight-entry return stack buffer. A
branch call pushes both the caller’s IP and its
current function state onto the RSB. A return
branch pops off this information. The RSB
predictions resteer the front end two cycles
after the cache lookup that contains the return
branch.

The branch prediction logic predicts indi-
rect branch targets on the basis of the current
value in the referenced branch register three
cycles after the cache lookup that contains the
indirect branch.

Branch resolution
All branch predictions are validated in the

back-end pipeline. The branch prediction
logic allows in-flight branch prediction to
determine future branch prediction behavior;
however, nonspeculative prediction state is
maintained and restored in the case of a mis-
prediction. Table 2 lists the possible branch
prediction penalties and their causes.

L2 branch cache
The size and organization of the branch

information suggests that branch prediction
accuracy suffers when the instruction stream
revisits a branch that has lost its prediction
history because of an eviction. To mitigate the
potential loss of branch histories, the L2
branch cache stores the trigger and histories
of branches evicted from the first-level stor-
age. The L2B is a 24,000-entry backing store
that does not use tags; instead it uses three
address-based hashing functions and voting
to determine the correct initialization of pre-
diction histories and triggers for L1I fills. Lim-
iting the L2B to prediction history and trigger
but not target provides a highly effective and
compact design. A branch target can be recal-
culated, in most cases, before a L1I fill occurs
and with little penalty. It is possible that the
L2B does not contain any information for the
line being filled to L1I. In that case, the trig-
ger and history bits are initialized according
to the branch completers provided in the
branch instruction.

Instruction buffer
The instruction buffer receives instructions

from the L1I or L2 caches and lets the front
end fetch instructions ahead of the back-end
pipeline’s consumption of instructions. This
eight-bundle buffer and bundle rotator can
present a wide combination of two-instruc-
tion bundles to back-end dispersal logic.
Thus, no matter how many instructions the
back end consumes in a cycle, two bundles
of instructions are available. The dispersal
logic indicates that zero, one, or two bundles
were consumed so that the instruction buffer
can free the appropriate entries. If the
pipeline is flushed or the instruction buffer
is empty, a bundle can bypass the instruction
buffer completely.

Instruction dispersal
Figure 3 shows the design of the Itanium 2

processor front end and dispersal logic. The
processor can issue and execute two instruc-
tion bundles, or six instructions, at a time.
These instructions issue to one of 11 issue
ports:

• two integer,
• four memory,
• two floating-point, and
• three branch.

48

ITANIUM 2 PROCESSOR

IEEE MICRO

Table 2. Possible branch prediction penalties and their causes. A

correctly predicted taken branch incurs no penalty.

Penalty (cycles) Cause
1 Correctly predicted taken IP-relative branch with

incorrect target and return branch
2 Nonreturn indirect branch
6 Incorrect taken/not taken prediction or incorrect

indirect target

These ports allocate instructions to several
execution units. Two integer units execute
integer operations such as shift and extract;
ALU operations such as add, and, and com-
pare; and multimedia ALU operations. Four
memory units execute memory operations
such as load, store, semaphore, and prefetch, in
addition to the ALU and multimedia instruc-
tions that the integer units can execute. The
four memory units are slightly asymmetric—
two are dedicated to integer loads and two to
stores. Compared with a two-memory-port
implementation, the four memory ports pro-
vide a threefold increase in dual-issue template
combinations and many other performance
improvement opportunities.5

The processor’s dispersal logic looks at two
bundles of instructions every cycle and assigns
as many instructions as possible to execution
resources. There are multiple resources for each

template type (I, M, F, B, and LX), and the
dispersal logic typically assigns the first I
instruction to the first I resource, the second I
instruction to the second I resource, and so on
until it exhausts the resources or an explicit
stop bit breaks up an issue group. If instruc-
tions in the two bundles considered require
more resources than available, the issue group
stops at the oversubscription point, and the
remaining instructions wait for dispersal in the
next cycle. The instruction in an issue group is
determined at dispersal and remains constant
through the in-order execution pipeline.

The dispersal logic dynamically maps
instructions to the most appropriate resource.
This is important in cases of limited or asym-
metric execution resources. For example, the
dispersal logic assigns a load instruction to the
first load-capable M port (M0 or M1) and a
store to the first store-capable M port (M2 or

49MARCH–APRIL 2003

F

M

M

M

M

I

I

B

B

B

F

1

0

2

1

2

0

L1I TLBL1I TLB

L1I tag

H
it

PVAB
Prefetch

virtual-address
buffer

P
at

te
rn

 h
is

to
ry

N
ex

t p
re

di
ct

io
n

IP
 n

ex
t

L1l
target
history

L1l
array

L2 histories

Instruction
buffer

Instruction-
streaming

buffer

L2
cache

H
it

+
32

Instruction
bundles

Issue
ports

Figure 3. Itanium 2 processor front-end and dispersal-logic design.

M3) even if the store precedes the load in the
issue group. In addition, the dispersal logic
ignores this asymmetry for floating-point loads
so that they issue to any M resource. Dynam-
ic resource mapping also lets instructions typ-
ically assigned to I resources issue on M
resources. If the template assigns an ALU or
multimedia operation to an I resource, but all
I resources have been exhausted, the dispersal
logic dynamically reassigns the operation to an
available M resource. Thus, the processor can
often issue a pair of MII bundles despite hav-
ing only two I resources. These capabilities
remove the burden of ordering and padding
instructions to ensure that they issue to cor-
rect resources from the code generator.

Register stack engine and register renaming
The Itanium 2 processor implements 128

integer registers, a register stack engine (RSE),
and register renaming. These features work
together to give software the perception of
unlimited registers. The RSE maintains the
register set currently visible to the application
by saving registers to and restoring registers
from a backing store. Software can allocate
registers as needed, and the RSE can stall the
pipeline to write a dirty register’s value to
memory (backing store) to make room for the
newly allocated registers. A branch return
instruction can also engage the RSE if the reg-
isters required by the return frame are not
available and must be loaded from the back-
ing store. The RSE significantly reduces the
number of memory operations required by
software for function and system calls. The
larger register file and the RSE implementa-
tion keep the amount of time applications
spend saving and restoring registers low.6

The register-renaming logic manages reg-
isters across calls and returns and enables effi-
cient software-pipelined code. The logic
works with branch instructions to provide a
new set of registers to a software-pipelined
loop through register rotation. Compilers
can software-pipeline many floating-point
and a growing number of integer loops,
resulting in significant code and execution
efficiencies. In addition, the static nature of
renaming, from RSE engagement onward,
means that this capability is far simpler than
the register renaming performed by out-of-
order implementations.

Scoreboard and hazard detection
The Itanium 2 processor’s scoreboard

mechanism enables high performance in the
face of L1D misses. Once physical register
identifiers are available from the register-
renaming logic, the hazard detection logic
compares them with the register scoreboard,
which lists registers associated with earlier
L1D misses. If an instruction source or desti-
nation register matches a scoreboarded regis-
ter, the issue group stalls at the execute (EXE)
stage until the register value becomes avail-
able. This feature facilitates nonblocking-
cache designs, in which multiple cache misses
can be outstanding and yet the processor can
continue to execute until the instruction
stream references a register in the scoreboard.

A similar mechanism exists for other long-
execution-latency operations such as floating-
point and multimedia operations. For them,
latency is fixed at four and two cycles, respec-
tively. The hazard detection logic tracks the
operation type and destination register and
compares each instruction source and desti-
nation register with these in-flight operations.
Like a scoreboard match, a long-latency-
operation match stalls the entire issue group.

Integer execution and bypass
The six execution units supporting integer,

multimedia, and ALU operations are fully
bypassed; that is, as soon as an execution unit
calculates a result, the result becomes avail-
able for use by another instruction on any
other execution unit. A producer-and-
consumer dependency matrix, considering
latencies and instruction types, controls the
bypass network. Twelve read ports and eight
write ports on the integer register file and 20
bypass choices support highly parallel execu-
tion.7 Six of the eight write ports are for cal-
culation results, and the other two provide
write paths for load returns from the L1D
cache. All ALU and integer operations com-
plete in one cycle.

Floating-point execution
Each of the two floating-point execution

units can execute a fused multiply-add or a
miscellaneous floating-point operation.
Latency is fixed at four cycles for all floating-
point calculations. The units are fully
pipelined and bypassed. Eight read and six

50

ITANIUM 2 PROCESSOR

IEEE MICRO

write ports access the 128 floating-point reg-
isters. Six of the read ports supply operands
for calculation; the remaining two read ports
are for floating-point store operations. Two of
the write ports are for calculation results; the
other four provide write paths for floating-
point load returns from the L2 cache. The
four M resources and the two F resources
combined allow two MMF bundles to exe-
cute every cycle. This provides the memory
and computational bandwidth required for
technical computing.5

Pipeline control
The Itanium 2 processor

pipeline is fully interlocked
such that a stall in the excep-
tion detect (DET) stage prop-
agates to the instruction
expand (EXP) stage and sus-
pends instruction advance-
ment. A stall caused by one
instruction in the issue group
stalls the entire issue group
and never causes the core
pipeline to flush and replay.
The DET-stage stall is the last
opportunity for an instruc-
tion to halt execution before
the pipeline control logic
commits it to architectural
state. The pipeline control
logic also synchronizes the
core pipeline and the L1D
pipeline at the DET stage.
The control logic allows these loosely coupled
pipelines to lose synchronization so that the
L1I and L2 caches can insert noncore requests
into the memory pipeline with minimal
impact on core instruction execution. Table
3 lists the stages and causes of potential stalls.

Memory subsystem
The relatively simple nature of the in-order

core pipeline allowed the Itanium 2 processor
designers to focus on the memory subsystem.
The processor implements a full complement
of region identifiers and protection keys, along
with 64 bits of virtual address and 50 bits of
physical address to provide 1,024 Tbytes of
addressability. The memory subsystem is a
low-latency, high-bandwidth design parti-
tioned and organized to handle integer,

floating-point, and enterprise workloads.5 Fig-
ure 4 shows a simplified diagram of the mem-
ory subsystem and system interface, including
some data and control paths and data integri-
ty features.

Advanced-load address table
The advanced-load address table (ALAT)

provides the ability to transform multicycle
load accesses into zero-cycle accesses through
dynamic memory disambiguation. The
pipeline and scoreboard designs encourage
scheduling loads as far ahead of use as possi-
ble to avoid core pipeline stalls. Unknown
data dependencies normally prevent a com-
piler from scheduling a load much earlier than
its use. The ALAT enables a load to advance
beyond an unknown data dependency by

51MARCH–APRIL 2003

Table 3. Potential pipeline stalls.

Stage Cause of stall
Rename RSE activity required
Execute Scoreboard and hazard detection logic
Exception detect L2D TLB miss; L2 cache resources unavailable for

memory operations; floating-point and integer pipeline
coordination to avoid possible floating-point traps; or L1D
and integer pipeline coordination

M0
M1

M2
M3

Store buffer

L1D TLB

L1D tag

L1D array
16 Kbytes

Hit

In
te

ge
r

B
us

 q
ue

ue
s

L3
 d

at
a

3
M

by
te

s

F
P

L2 data
256 Kbytes

System interface

L3 tags
L2 tags

Fill buffer

L1D store tag

L2D TLB
128 entries

ECC
Parity
Multi-hit

Data path
Address/control

Figure 4. Itanium 2 processor’s memory subsystem and system interface.

resolving that dependency dynamically. An
advanced load allocates an entry in the ALAT,
a four-ported, 32-entry, fully associative struc-
ture that records the register identifiers and
physical addresses of advanced loads. A later
store to the same address invalidates all over-
lapping ALAT entries. Later, when an instruc-
tion requires the load’s result, the ALAT
indicates whether the load is still valid. If so,
a use of the load data is allowed in the same
cycle as the check without penalty. If a valid
entry is not found, the load is automatically
reissued and the use is replayed. The Itanium
architecture allows scheduling of a use in the
same issue group as the check; hence, from
the code scheduler’s perspective, an ALAT hit
has zero latency.

L1D cache
The data TLBs and L1D cache are similar

in design to the instruction TLBs and caches;
they share key attributes such as size, latency,
arrangement, and tight integration with tags
and the first-level TLB. The principle of
prevalidated tags enables a one-cycle L1D
cache. This feature is essential for a wide in-
order microprocessor to achieve high perfor-
mance in many integer workloads. If the
latency were two cycles, the compiler would
need to schedule at least five, and often more,
instructions to cover the latency. The Itani-
um 2 processor’s single-cycle latency requires
only an explicit stop between a load and its
use, thus easing the burden on the code gen-
erator to extract instruction-level parallelism.

The L1D is a multiported, 16-Kbyte, four-
way set-associative, physically addressed cache
with a 64-byte line protected by parity.
Instructions access the L1D in program order;
hence, it is an in-order cache. However, the
scoreboard logic allows the L1D and other
cache levels to be nonblocking. The L1D pro-
vides two dedicated load ports and two dedi-
cated store ports. These ports are fixed, but
the dispersal logic rearranges loads and stores
within an issue group to ensure they reach the
appropriate memory resource. The two load
requests can hit and return data from the L1D
in parallel without conflict. Rotators between
the data array and the register file allow inte-
ger loads to any unaligned data reference with-
in an 8-byte datum, as well as support for big-
or little-endian accesses.

The prevalidated tags and first-level TLB
serve only integer loads. Stores access the sec-
ond-level data (L2D) TLB and use a tradi-
tional tagging mechanism. This increases their
latency, but store latency is not a performance
issue, in part because store-load forwarding is
provided in the store data path. The L1D
enforces a write-through with a no-write-
allocate policy such that it passes all stores to
the L2 cache, and store misses do not allocate
into the L1D. If a store hits in the L1D, the
data moves to a store buffer until the data array
becomes available to update the L1D. These
store buffers can merge store data from other
stores and forward their contents to later loads.

Integer load and data prefetch misses allo-
cate into the L1D, according to temporal hints
and available resources. Up to eight L1D lines
can have fill requests outstanding, but the total
number of permitted L1D misses is limited
only by the scoreboard and the other cache lev-
els. If the L2 cannot accept a request, it applies
back pressure and the core pipeline stalls. Before
an L1D load miss or store request is dispatched
to the L2, it accesses the L2D TLB. The TLB
access behavior for loads differs from that of
the instruction cache: The L1D and L2D TLBs
are accessed in parallel for loads, regardless of an
L1D hit or miss. This reduces both L1D and
L2 latency. Consequently, the 128-entry, fully
associative L2D TLB is fully four-ported to
allow the complete issue of every possible com-
bination of four memory operations.

The L1D is highly integrated into the inte-
ger data path and the L2 tags. All integer loads
must go through the L1D to return data to the
register file and core bypass network. The L1D
pipeline processes all memory accesses and
requests that need access to the L2 tags or the
integer register file. Accordingly, several types of
requests arbitrate for access to the L1D. Some
of these requests have higher priority than core
requests, and if there are conflicts, the core
memory request stalls the core and reissues to
the L1D when resources are available.

L2 cache
The second-level (L2) cache is a unified,

256-Kbyte, eight-way set-associative cache
with a 128-byte line size. The L2 tags are true
four-ported, with tag and ownership state pro-
tected by parity. The tags, accessed as part of
the L1D pipeline, provide an early L2 hit or

52

ITANIUM 2 PROCESSOR

IEEE MICRO

miss indication. The L2 enforces write-back
and write-allocate policies. The L2’s integer
access latency is five, seven, nine, or more
cycles. Floating-point accesses require an addi-
tional cycle for converting to the floating-
point register format.

The L2 cache is nonblocking and out of
order. All memory operations that access the
L2 (L1D misses and all stores) check the L2
tags and are allocated to a 32-entry queuing
structure called the L2 OzQ. All stores require
one of the 24 L2 data entries to hold the store
until the L2 data array is updated. L1I instruc-
tion misses also go to the L2 but are stored in
the instruction fetch FIFO (IFF) queue.
Requests in the L2 OzQ and the IFF queue
arbitrate for access to the data array or the L3
cache and system interface. This arbitration
depends on the type of IFF request; instruc-
tion demand requests issue before data
requests, and data requests issue before
instruction prefetch requests. Up to four L2
data operations and one request to the L3 and
system interface can issue every cycle.

The L2 OzQ maintains all architectural
ordering between memory operations, while
allowing unordered accesses to complete out
of order. This makes specifying a single L2
latency difficult but helps ensure that older
memory operations do not impede the
progress of younger ones. In many cases,
incoming requests bypass allocation to the L2
OzQ and access the data array immediately.
This provides the five-cycle latency mentioned
earlier. Sometimes the request can bypass the
OzQ, but an L2 resource conflict forces the
request to have a seven-cycle latency. The min-
imum latency for a request that issues from
the L2 OzQ is nine cycles. Resource conflicts,
ordering requirements, or higher-priority
operations can extend a request’s latency
beyond nine cycles.

The L2 data array has 16 banks; each bank
is 16 bytes wide and ECC-protected. The
array allows multiple simultaneous accesses,
provided each access is to a different bank.
Floating-point loads can bypass or issue from
the L2 OzQ, access the L2 data array, com-
plete four requests at a time, and fully utilize
the L2’s four data paths to the floating-point
units and register file. The L2 does not have
direct data paths to the integer units and reg-
ister file; integer loads deliver data via the

L1D, which has two data paths to the integer
units and register file. Stores can bypass or
issue from the L2 OzQ and access the L2 data
array four at a time, provided they access dif-
ferent banks.

The fill path width from the L2 to the L1D
and the L1I is 32 bytes, requiring two cycles
to transfer a 64-byte L1I or L1D line. The fill
bandwidth from the L3 or system interface to
the L2 is also 32 bytes per cycle. Four 32-byte
quantities accumulate in the L2 fill buffers for
either the L3 or system interface, allowing the
interleaving of system interface and L3 data
returns. The 128-byte cache line is written
into the L2 in one cycle, updating both tag
and data arrays.

L3 cache and system interface
All cacheable requests that the L2 cannot

satisfy arrive at the L3 and the system inter-
face. The L2 can make partial line requests of
the system interface for uncacheable and
write-coalescing accesses, but all cacheable
requests are 128-byte accesses. The L2 can
make one request to the L3 and the system
interface per cycle. Requests enter one of the
16 bus request queues (BRQs) maintained by
the system interface control logic. The BRQ
can then send each request to the L3 to deter-
mine whether the L3 can satisfy the request.
To lower the L3 access latency, an L2 request
can bypass the BRQ allocation and query the
L3 immediately. If the request is an L3 miss,
it is scheduled to access the system interface.
When the system interface responds with the
data, the line is written to the L2 and the L3
in accordance with its temporal locality hints
and access type.

L3 cache. The third-level cache is a unified, 3-
Mbyte, 12-way set-associative cache with a
128-byte line size. Its access latency can be as
low as 12 cycles, largely because the entire
cache is on chip. All L3 accesses return an
entire 128-byte line; the L3 doesn’t support
partial line accesses. The single-ported L3 tag
array has ECC protection and is pipelined to
allow a new tag access every cycle. The L3 data
array is also single-ported and has ECC pro-
tection, but it requires four cycles to transfer
a full data line to the L2 cache or the system
interface. Requests that fill the L3 require four
cycles to transfer data, using a separate data

53MARCH–APRIL 2003

path so that L3 reads and writes can be
pipelined for maximum bandwidth. The L3
is nonblocking and has an eight-entry queue
to support multiple outstanding requests.
This queue orders requests and prioritizes
them among tag read or write and data read or
write to achieve the highest performance.

System interface. The system interface oper-
ates at 200 MHz and includes multiple sub-
buses for various functions, such as
address/request, snoop, response, data, and
defer. All buses, except the snoop bus, are pro-
tected against errors by parity or ECC. The
data bus is 128 bits wide and operates source-
synchronously at 400 million data transfers, or
6.4 Gbytes, per second. The system interface
seamlessly supports up to four Itanium 2
processors.

The system interface control logic contains
an in-order queue (IOQ) and an out-of-order
queue (OOQ), which track all transactions
pending completion on the system interface.
The IOQ tracks a request’s in-order phases
and is identical on all processors and the node
controller. The OOQ holds only deferred
processor requests. The IOQ can hold eight
requests, and the OOQ can hold 18 requests.
The system interface logic also contains two
128-byte coalescing buffers to support write-
coalescing stores. The buffers can coalesce
store requests at byte granularity, and they
strive to generate full line writes for best per-
formance. Writes of 1 to 8 bytes, 16 bytes, or
32 bytes are possible when holes exist in the
coalescing buffers.

The similarities between the system inter-
faces of the Itanium 2 and Itanium proces-
sors allowed several implementations to
leverage their Itanium-based solutions for use
with the Itanium 2 processor. However, large,
multinode system designs required addition-
al support for high performance and reliabil-
ity. As a result, the processors’ system interface
defines a few new transactions. The read cur-
rent transaction lets the node controller obtain
a current copy of data in a processor, while
allowing the processor to maintain ownership
of the line. The cache line replacement trans-
action informs a multinode snoop directory
that an L3 clean eviction occurred to remove
unnecessary snoop traffic. The cleanse cache
transaction pushes a modified cache line out

to system memory. This allows higher-
performance processor check pointing in
high-availability systems without forcing the
processor to give up ownership of the line.

Soon after the Itanium 2 processor’s intro-
duction, major computer system providers

either announced or introduced single- and
dual-processor workstations, four- to 128-
processor servers, and a 3,300-processor
supercomputer, all using the Itanium 2
processor. The operating systems available for
these systems include HPUX, Linux, and
Windows .NET, and will eventually include
OpenVMS. These systems and operating sys-
tems target a diverse set of computing prob-
lems and use the processor effectively for
workstation, server, and supercomputer work-
loads. The Itanium 2 processor fits well in
such varied environments because of its bal-
anced design from instruction fetch to system
interface and its flexible underlying architec-
ture. The design team capitalized on the per-
formance opportunities available in the
Itanium architecture to produce a high-
performance, in-order implementation and
provide computer system developers a pow-
erful and versatile building block. MICRO

References
1. H. Sharangpani and K. Arora, “Itanium

Processor Microarchitecture,” IEEE Micro,
vol. 20, no. 5, Sept.-Oct. 2000, pp. 24-43.

2. J. Huck et al., “Introducing the IA-64
Architecture” IEEE Micro, vol. 20, no. 5,
Sept.-Oct. 2000, pp. 12-23.

3. D. Bradley, P. Mahoney, and B. Stackhouse,
“The 16KB Single-Cycle Read Access Cache
on a Next Generation 64b Itanium
Microprocessor,” Proc. 2002 IEEE Int’l Solid-
State Circuits Conf. (ISSCC 02), IEEE Press,
2002, pp. 110-111.

4. T.-Y. Yeh and Y.N. Patt, “Alternative
Implementations of Two-Level Adaptive
Branch Prediction,” Proc. 19th Int’l Symp.
Computer Architecture (ISCA 92), ACM
Press, 1992, pp. 124-134.

5. T. Lyon et al., “Data Cache Design
Considerations for the Itanium 2 Processor,”
Proc. 2002 IEEE Int’l Conf. Computer
Design: VLSI in Computers and Processors
(ICCD 02), IEEE Press, 2002, pp. 356-362.

6. J. McCormick and A. Knies, “A Brief

54

ITANIUM 2 PROCESSOR

IEEE MICRO

Analysis of the SPEC CPU2000 Benchmarks
on the Intel Itanium 2 Processor,” 2002;
http://www.hotchips.org/archive/index.html.

7. E.S. Fetzer and J.T. Orton, “A Fully-Bypassed
6-Issue Integer Datapath and Register File on
an Itanium Microprocessor,” Proc. 2002
IEEE Int’l Sold-State Circuits Conf. (ISSCC
02), IEEE Press, 2002, pp. 420-478.

Cameron McNairy is an Itanium 2 processor
microarchitect at Intel. His research interests
include high-performance technical comput-
ing and large-system design issues. McNairy
has a BSEE and an MSEE from Brigham
Young University. He is a member of the IEEE.

Don Soltis is an Itanium 2 processor micro-
architect at Hewlett-Packard. His research inter-
ests include microprocessor cache design and
microprocessor verification. Soltis has a BSEE
and an MSEE from Colorado State University.

Direct questions or comments about this
article to Cameron McNairy, 3400 E. Har-
mony Road, MS 55, Fort Collins, CO 80526;
cameron.mcnairy@intel.com.

For further information on this or any other
computing topic, visit our Digital Library at
http://computer.org/publications/dlib.

55MARCH–APRIL 2003

Computer
Agile Software Development
Piracy & Privacy

IEEE Computer Graphics & Applications
3D Reconstruction & Visualization

Computing in Science & Engineering
The End of Moore’s Law

IEEE Design & Test
Clockless VLSI Design

IEEE Intelligent Systems
AI & Elder Care

IEEE Internet Computing
The Semantic Web

IT Professional
Financial Market IT

IEEE Micro
Hot Chips 14

IEEE MultiMedia
Computational Media Aesthetics

IEEE Software
Software Geriatrics:

Planning the Whole Life Cycle

IEEE Security & Privacy
Digital Rights Management

IEEE Pervasive Computing
Smart Spaces

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

