
1

Lecture 11

Architectures for Low Power:
Transmeta’s Crusoe & Efficeon
Processors

Processor Thermal
Comparison

Intel Pentium III Crusoe TM5400
Processor

Motivation

Exponential performance increase at a low cost
However, for some application areas low power
consumption is more important than performance:

Mobile communications
Mobile computing
Wireless Internet
Medical implants
Deep space applications

Battery life time

Power Consumption in
CMOS Circuits

Basic classes of the

consumed power

Static

Dynamic

2

Power Consumption in CMOS
Circuits

Static Power
Ideally, CMOS circuits dissipate no static (DC) power since in

the steady state there is no direct path from Vdd to ground.

Static component of CMOS power dissipation

Leakage currents

Subthreshold currents

Substrate currents

Little effect on overall power consumption

Dynamic Power
Dynamic component of CMOS power dissipation

Transient switching behavior

With careful design for balanced input and output rise times, this

component can be kept below 10-15% of the total power.

Capacitive switching

The result of charging and discharging parasitic capacitances in

the circuit

Power Consumption in CMOS
Circuits

Dynamic Power (Cont.)
Dynamic power dissipation due

to capacitive switching

Every time a capacitive node

switches from ground to Vdd,

an energy of CVdd
2 is

consumed.

Depends on the switching

activity of the signals involved.

Power Consumption in CMOS
Circuits

Dynamic Power (Cont.)
Effective frequency of switching, αf

Activity α : The expected number of transitions / data cycle

Average data rate f : The clock frequency in a synchronous

system

Average CMOS power consumption

At least 90% of the total power dissipation

fCVP dddyn α




= 2

2
1

Power Consumption in CMOS
Circuits

3

Designing for Low Power:
Degrees of Freedom

3 degrees of freedom inherent in the low-power design

space

Supply voltage

Physical capacitance

Switching activity

These parameters are not completely orthogonal and cannot

be optimized independently.

fCVP dddyn α




= 2

2
1

Voltage
Quadratic relationship to power

The most direct and dramatic means of minimizing energy

consumption

Factors that influence selection of a system supply voltage

Power

Performance requirements

Compatibility

Designing for Low Power:
Degrees of Freedom

Designing for Low Power:
Degrees of Freedom

Physical Capacitance
Stems from two primary sources

Devices

Interconnect

Can be kept at a minimum by using small devices and short

wires.

Device size ⇓ → Capacitance ⇓ , Current drive ⇓

The circuit operates more slowly →prevents from lowering Vdd.

Designing for Low Power:
Degrees of Freedom

4

Activity
Determines how often switching occurs.

f determines the average periodicity of data
arrivals, α determines how many transitions each

arrival will spark.

Glitching
Spurious and unwanted transitions that occur before a

node settles down to its final value.

Designing for Low Power:
Degrees of Freedom

Many of the power reduction techniques applicable at

various level of abstraction follow a small number of

common themes (approaches).
Trading area/performance for power

Avoiding waste

Exploiting locality

Designing for Low Power:
Approaches

Crusoe Family of Processors
from Transmeta

Introduction
Software

Code Morphing

Hardware
VLIW core

Power Management
LongRun

Applications

Hardware/Software Partitioning

Drawing the H/W and S/W line
Hardware: VLIW+hardware translation support
Software: Translates x86 code to VLIW code

5

Crusoe Processor
= Software+Hardware

VLIW hardware
• 128 bit Very long Instruction Word Processor
• Simple and fast
• Fewer transistors

Low power
x86 compatibility
PC performance

Code Morphing software
• Dynamically translates x86 instructions into VLIW instructions
• Provides x86 compatibility
• Optimization and scheduling by software

3/4

1/4

Code Morphing Software

Crusoe Architecture (TM5800) Crusoe Architecture, Cont.

VLIW CPU : executing up to 4 operations in each cycle
Molecule: long instruction word (128 bits molecule)
All atoms within a molecule are executed in parallel

2 ALU, 1FP, 1 load/store, 1 branch unit
In-order 7-stage integer/10-stage FP pipeline
64 integer registers, 32 FP registers

6

• The blue stuff is silicon, and the yellow is software
• Crusoe's blue part is smaller
• All of those hardware was moved off the die and into software

Crusoe vs. x86 Code Morphing Software

A dynamic translation system
Provides the Transmeta Crusoe processor with x86 compatibility
Resides in ROM: first program to start executing when booting

Benefits
Improvements to power consumption and performance
Upgrades to the software portion of a microprocessor can be
rolled out independently from the chip.
Decoupling the hardware design from the system and
application software

Code Morphing System

Interpreter
Decodes and executes x86 instructions sequentially

Dynamic binary translator
Select a region, produce native code
and store translation in the translation cache

Optimizer
Perform a number of traditional and
Crusoe-specific optimizations

Runtime system
Handle devices, interrupts and exceptions,
power management, and garbage collection

7

Interpretation & Translation

Interpretation
Keep track of which blocks of code
execute most often

Optimizes them accordingly
Keep track of which branches are most often taken

Annotate the code accordingly

Translation
Highly optimized code

Takes longest to generate
Run faster once translated

Translation cache
Resides in a separate memory space
The size can be set at boot time or via the OS

Translation Process

1st pass (frontend)
Translate the x86 instructions into a simple sequences of atoms

Temporary register used

2nd pass (optimizer)
Well-known compiler optimization

Common subexpression elimination
Loop invariant removal
Dead code elimination

3rd pass (scheduler)
Reorders the optimized atoms and
groups them into individual molecules

More effective scheduling algorithms
Larger window of execution

Translation

by code
morphing
software

Translation Step 1

Ld %r30, [%esp]
Add.c %eax, %eax, %r30
Ld %r31, [%esp]
Add.c %ebx, %ebx, %r31
Ld %esi, [%ebp]
Sub.c %ecx, %ecx, 5

Original x86 code Native VLIW code

Addl %eax, (%esp)
Addl %ebx, (%esp)
Movl %esi, (%ebp)
Subl %ecx, 5

Optimisation

Elimination of
atoms + extra
condition
code options.

Translation Step 2

Ld %r30, [%esp]
Add %eax, %eax, %r30
Add %ebx, %ebx, %r30
Ld %esi, [%ebp]
Sub.c %ecx, %ecx, 5

Optimized Native VLIW codeNative VLIW code

Ld %r30, [%esp]
Add.c %eax, %eax, %r30
Ld %r31, [%esp]
Add.c %ebx, %ebx, %r31
Ld %esi, [%ebp]
Sub.c %ecx, %ecx, 5

8

Translation Step 3

1. Ld %r30, [%esp]; Sub.c %ecx, %ecx, 5
2. Ld %esi, [%ebp]; Add %eax, %eax, %r30; Add %ebx, %ebx, %r30

Scheduling -remaining atoms into molecules
using a large window.

Scheduled Native VLIW code

Optimized Native VLIW code

Ld %r30, [%esp]
Add %eax, %eax, %r30
Add %ebx, %ebx, %r30
Ld %esi, [%ebp]
Sub.c %ecx, %ecx, 5

Precise Exceptions

A. addl %eax,(%esp)
B. addl %ebx,(%esp)
C. movl %esi,(%ebp)
D. subl %ecx,5

Translated to:
1. ld %r30,[%esp]; sub.c %ecx,%ecx,5
2. ld %esi,[%ebp]; add %eax,%eax,%r30; add %ebx,%ebx,%r30

Problem
x86 exception in C: D should not be executed
In the VLIW code D is also executed

Hardware Support for
Speculation and Recovery

Two copies of each register: working copy & shadow copy
Gated store buffer: all store operations go to a buffer

Commit operation:
execution successfully reaches the end of a translation

Copy all working registers into shadow registers
Write gated store buffer to the memory system

Rollback operation:
exceptional condition occurs inside the translation

Copy the shadow register values back into the working registers
Stores not yet committed are dropped from the gated store buffer

Reorder Loads ahead of Stores

ld %r30,[%x] // first load from location X
...
st %data,[%y] // might overwrite location X
ld %r31,[%x] // this accesses location X again
use %r31

If the store operation does not overlap with the first load,
the second load is redundant
Translator cannot prove that
load and store addressed do not overlap

9

Alias Hardware

When the translator moves a load operation ahead of a
store operation

Load => load-and-protect
Load and record the address and size of data loaded

Store => store-under-alias-mask
Check for protected regions
Raise exception

ldp %r30,[%x] // load from X and protect it
...
stam %data,[%y] // this store traps if it writes X
use %r30 // can use data from first load

Self-modifying code

Detecting self-modifying code
Simply write-protect an x86 memory page.
If data on that protected page were later modified,
fault occurred

Discard the affected translation.

Cost
Handling the fault and invalidating translations
Re-generating the translations

Advantages of the Code
Morphing Software

Much of the processor functionality
is implemented in software
- less logic transistors, less power
- use effective optimization/schedule algorithm
- use a larger window of instruction
- …

Full of complex, power-hungry
Transistors

Translates instructions once,
saving the resulted translation in a cache
for re-use

Translates each x86 instruction
every time it is encountered

Crusoe Processor
with Code Morphing software

Traditional x86 Processors

x86 Approach: ACPI Standard

ACPI - Advanced Configuration and Power Interface
joint standard of Microsoft, Intel, and Toshiba
System level technique to reduce power

Allows three low-power states that can be alternated
AutoHALT - processor executes HLT instr

Processor stops its internal clock

QuickStart - Southbridge gives processor STPCLK signal
Processor maintains cache coherency

Deep Sleep - Southbridge disables processor CLK input
Southbridge maintains cache coherency

10

Conventional Power Profile LongRun Power Management

Approach to low power consumption
Reduce transistor count to decrease capacitance
Scale voltage and frequency dynamically to give just
enough performance for current workload

LongRun
If no idle time detected during a workload,
the frequency/voltage point is incremented
If idle time is detected,
decrement the frequency/voltage level

LongRun
Power Management, Cont.

VLIW engine with frequency/voltage adjustments
Frequency changes in steps of 33 MHz
Voltage changes in steps of 25mV
Supports up to 200 frequency/voltage
changes per second

Can give cubic reductions in power consumption!

LongRun Power Profile

11

Power Consumption
Comparison

0

0.2

0.4

0.6

0.8

1

1.2

Office 2000 Web Browser Mp3 DVD

Applictions

W
at

ts

Mobile Pentum III 500Mhz
TM5400
TM3120

First Transmeta Chips

TM3120
Originally designed for 32 bit conversions (Unix)
However 16 bit windows instructions translated poorly

TM5400
The chip was redesigned to give better support to
Windows’ 16-bit applications.
Larger caches: improved Windows performance.

Two chips - Two different applications.

TM3120

12

TM5400 Crusoe Processors
L1 cache : 128 K

DDRAM-SDRAM (100 to 133MHz)
SDRAM (66 to 133MHz)

Applications

TM3120
Suitable for portable and embedded systems.
Runs a mobile Linux kernel.
Capable of running Internet applications:

Web browsers
e-mail applications
Streaming video

TM5400
Ultralite Laptops
Microsoft Windows compatible
Computer makers backing Transmeta include:

IBM, Fujitsu, FIC, NEC, and Hitachi

Applications, Cont.

Currently:
Ultralite laptops
e.g., Sharp Actius

Processor
EfficeonTM TM8600

