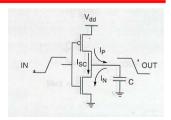

Lecture 11

Architectures for Low Power: Transmeta's Crusoe & Efficeon Processors

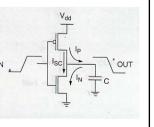
Motivation


- Exponential performance increase at a low cost
- However, for some application areas low power consumption is more important than performance:
 - Mobile communications
 - Mobile computing
 - Wireless Internet
 - Medical implants
 - Deep space applications
- Battery life time

Processor Thermal Comparison

Power Consumption in CMOS Circuits

- Basic classes of the consumed power
 - Static
 - Dynamic



Power Consumption in CMOS Circuits

- Static Power
 - Ideally, CMOS circuits dissipate no static (DC) power since in the steady state there is no direct path from V_{dd} to ground.
 - Static component of CMOS power dissipation
 - Leakage currents
 - Subthreshold currents
 - Substrate currents
 - Little effect on overall power consumption

Power Consumption in CMOS Circuits

- Dynamic Power (Cont.)
 - Dynamic power dissipation due to capacitive switching
 - Every time a capacitive node switches from ground to V_{dd}, an energy of CV_{dd}² is consumed.
 - Depends on the switching activity of the signals involved.

Power Consumption in CMOS Circuits

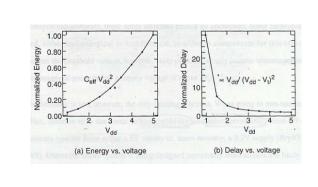
- Dynamic Power
 - Dynamic component of CMOS power dissipation
 - Transient switching behavior
 - With careful design for balanced input and output rise times, this component can be kept below 10-15% of the total power.
 - Capacitive switching
 - The result of charging and discharging parasitic capacitances in the circuit

Power Consumption in CMOS Circuits

- Dynamic Power (Cont.)
 - Effective frequency of switching, αf
 - Activity $\boldsymbol{\alpha}$: The expected number of transitions / data cycle
 - Average data rate *f*: The clock frequency in a synchronous system
 - Average CMOS power consumption

$$P_{dyn} = \left(\frac{1}{2}CV_{dd}^2\right) pf$$

- At least 90% of the total power dissipation


Designing for Low Power: Degrees of Freedom

• 3 degrees of freedom inherent in the low-power design space

$$P_{dyn} = \left(\frac{1}{2}CV_{dd}^2\right)g$$

- Supply voltage
- Physical capacitance
- Switching activity
- These parameters are not completely orthogonal and cannot be optimized independently.

Designing for Low Power: Degrees of Freedom

Designing for Low Power: Degrees of Freedom

- Voltage
 - Quadratic relationship to power
 - The most direct and dramatic means of minimizing energy consumption
 - Factors that influence selection of a system supply voltage
 - Power
 - Performance requirements
 - Compatibility

Designing for Low Power: Degrees of Freedom

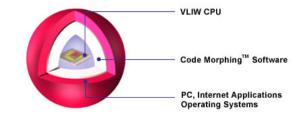
- Physical Capacitance
 - Stems from two primary sources
 - Devices
 - Interconnect
 - Can be kept at a minimum by using small devices and short wires.
 - Device size $\Downarrow \to \! \mathsf{Capacitance} \Downarrow,$ Current drive \Downarrow
 - The circuit operates more slowly $\rightarrow \text{prevents}$ from lowering $V_{\text{dd}}.$

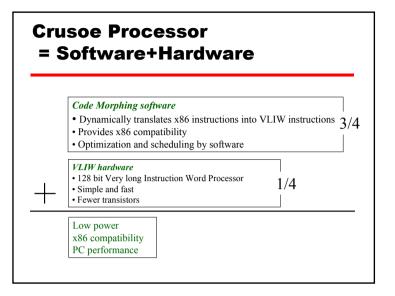
Designing for Low Power: Degrees of Freedom

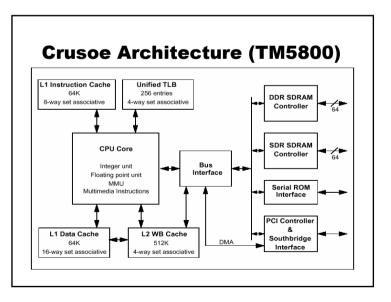
Activity

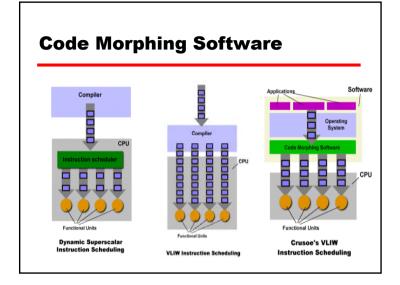
- Determines how often switching occurs.
- *f* determines the average periodicity of data arrivals, α determines how many transitions each arrival will spark.
- Glitching
 - Spurious and unwanted transitions that occur before a node settles down to its final value.

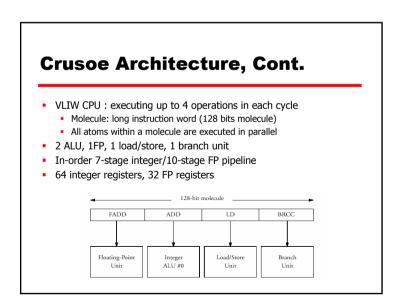
Designing for Low Power: Approaches

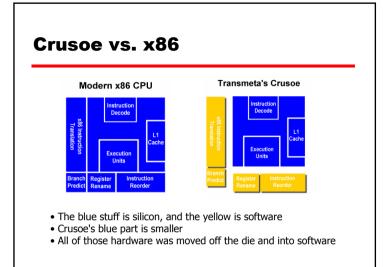

- Many of the power reduction techniques applicable at various level of abstraction follow a small number of common themes (approaches).
 - Trading area/performance for power
 - Avoiding waste
 - Exploiting locality

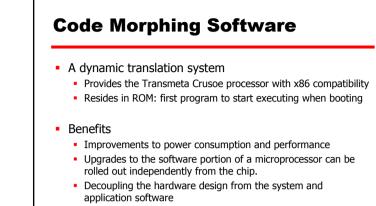

Crusoe Family of Processors from Transmeta

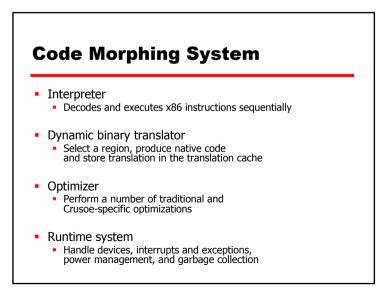

- Introduction
- Software
 - Code Morphing
- Hardware
 - VLIW core
- Power Management
 - LongRun
- Applications

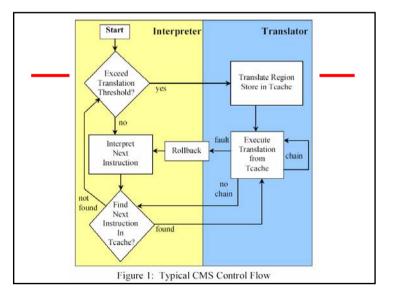

Hardware/Software Partitioning

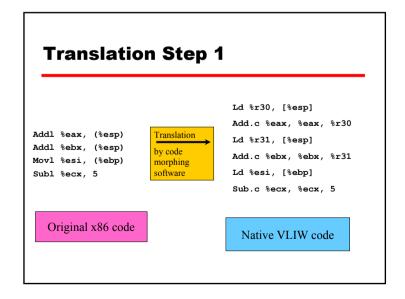

- Drawing the H/W and S/W line
 - Hardware: VLIW+hardware translation support
 - Software: Translates x86 code to VLIW code











- Interpretation
 - Keep track of which blocks of code execute most often
 - Optimizes them accordingly
 - Keep track of which branches are most often taken
 - Annotate the code accordingly
- Translation
 - Highly optimized code
 - Takes longest to generate
 - Run faster once translated
 - Translation cache
 - · Resides in a separate memory space
 - The size can be set at boot time or via the OS

Translation Process

- 1st pass (frontend)
 - Translate the x86 instructions into a simple sequences of atoms
 Temporary register used
- 2nd pass (optimizer)
 - Well-known compiler optimization
 - Common subexpression elimination
 - Loop invariant removal
 - Dead code elimination
- 3rd pass (scheduler)
 - Reorders the optimized atoms and groups them into individual molecules
 - More effective scheduling algorithms
 - Larger window of execution

Translation Step 2 Ld %r30, [%esp] Ld %r30, [%esp] Add.c %eax, %eax, %r30 Optimisation Add %eax, %eax, %r30 Elimination of Ld %r31, [%esp] Add %ebx, %ebx, %r30 atoms + extraAdd.c %ebx, %ebx, %r31 condition Ld %esi, [%ebp] Ld %esi, [%ebp] code options. Sub.c %ecx, %ecx, 5 Sub.c %ecx, %ecx, 5 Native VLIW code Optimized Native VLIW code

Translation Step 3
Optimized Native VLIW code
Ld %r30, [%esp]
Add %eax, %eax, %r30
Add %ebx, %ebx, %r30
Ld %esi, [%ebp]
Sub.c %ecx, %ecx, 5
Scheduling -remaining atoms into molecules using a large window.
1. Ld %r30, [%esp]; Sub.c %ecx, %ecx, 5
2. Ld %esi, [%ebp]; Add %eax, %eax, %r30; Add %ebx, %ebx, %r30
Scheduled Native VLIW code

Precise Exceptions

- A. addl %eax,(%esp) B. addl %ebx,(%esp) C. movl %esi,(%ebp)
- D. subl %ecx,5

Translated to: 1. ld %r30,[%esp]; sub.c %ecx,%ecx,5

- 2. Id %esi,[%ebp]; add %eax,%eax,%r30; add %ebx,%ebx,%r30
- Problem

...

- x86 exception in C: D should not be executed
- In the VLIW code D is also executed

Hardware Support for Speculation and Recovery

• Two copies of each register: working copy & shadow copy

Gated store buffer: all store operations go to a buffer

 Commit operation: execution successfully reaches the end of a translation

- Copy all working registers into shadow registers
- Write gated store buffer to the memory system
- Rollback operation: exceptional condition occurs inside the translation
 - Copy the shadow register values back into the working registers
 - Stores not yet committed are dropped from the gated store buffer

Reorder Loads ahead of Stores

Id %r30,[%x] // first load from location X

st %data,[%y] // might overwrite location X ld %r31,[%x] // this accesses location X again use %r31

- If the store operation does not overlap with the first load, the second load is redundant
- Translator cannot prove that load and store addressed do not overlap

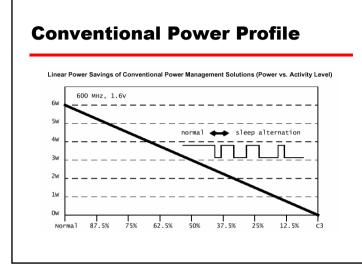
Alias Hardware

- When the translator moves a load operation ahead of a store operation
 - Load => load-and-protect
 - Load and record the address and size of data loaded
 - Store => store-under-alias-mask
 - Check for protected regions
 - Raise exception

ldp %r30,[%x] // load from X and protect it

... stam %data,[%y] // this store traps if it writes X use %r30 // can use data from first load

Advantages of the Code Morphing Software

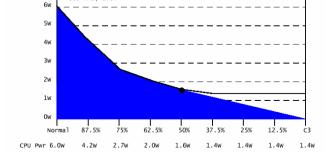

Traditional x86 Processors	Crusoe Processor
	with Code Morphing software
Translates each x86 instruction	Translates instructions once,
every time it is encountered	saving the resulted translation in a cache
every time it is encountered	for re-use
	Much of the processor functionality
	is implemented in software
Full of complex, power-hungry	- less logic transistors, less power
Transistors	- use effective optimization/schedule algorithm
	- use a larger window of instruction

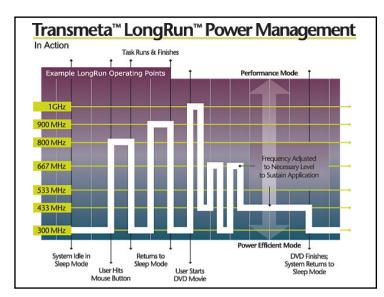
Self-modifying code

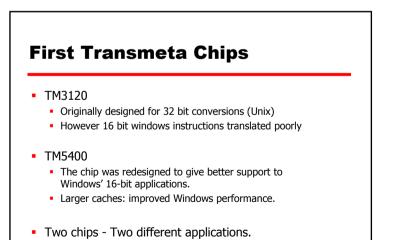
- Detecting self-modifying code
 - Simply write-protect an x86 memory page.
 - If data on that protected page were later modified, fault occurred
- Discard the affected translation.
- Cost
 - Handling the fault and invalidating translations
 - Re-generating the translations

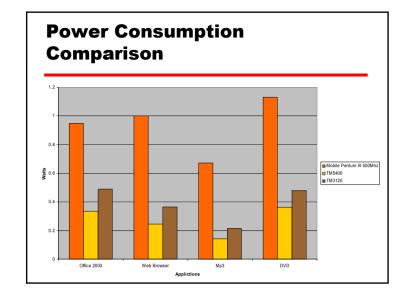
x86 Approach: ACPI Standard

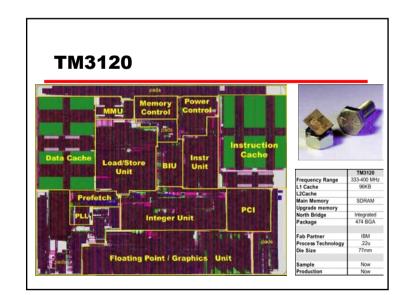
- ACPI Advanced Configuration and Power Interface
 - joint standard of Microsoft, Intel, and Toshiba
 - System level technique to reduce power
- Allows three low-power states that can be alternated
 - AutoHALT processor executes HLT instr
 - Processor stops its internal clock
 - QuickStart Southbridge gives processor STPCLK signal
 - Processor maintains cache coherency
 - Deep Sleep Southbridge disables processor CLK input
 - Southbridge maintains cache coherency

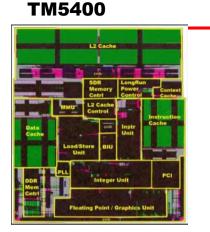

LongRun Power Management

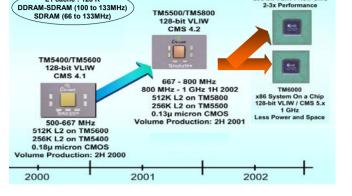

- Approach to low power consumption
 - Reduce transistor count to decrease capacitance
 - Scale voltage and frequency dynamically to give just enough performance for current workload
- LongRun
 - If no idle time detected during a workload, the frequency/voltage point is incremented
 - If idle time is detected, decrement the frequency/voltage level


LongRun Power Management, Cont.

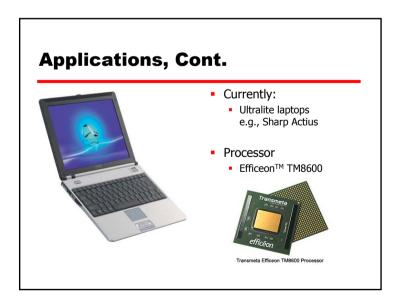

- VLIW engine with frequency/voltage adjustments
 - Frequency changes in steps of 33 MHz
 - Voltage changes in steps of 25mV
 - Supports up to 200 frequency/voltage changes per second
- Can give cubic reductions in power consumption!


LongRun Power Profile Figure 2: LongRun Power Profile (Power Consumption vs. Activity Level) 600 MHz, 1.6V Sw





G	H
G	H
G	r (
G	
G	
0	
	and the second se
Contraction of the second second	
	D
	n
	TM5400
Frequency Range	500-700 MHz
L1 Cache	128K
L2Cache	256K
Main Memory	DDR-SDRAM
	SDRAM
Upgrade memory	
North Bridge	Integrated
	474 BGA
North Bridge	
North Bridge	
North Bridge Package	474 BGA
North Bridge Package Fab Partner	474 BGA IBM
North Bridge Package Fab Partner Process Technology	474 BGA IBM .18u
North Bridge Package Fab Partner Process Technology	474 BGA IBM .18u


Crusoe Processors

Applications

TM3120

- Suitable for portable and embedded systems.
- Runs a mobile Linux kernel.
- Capable of running Internet applications:
 - Web browsers
 - e-mail applications
 - Streaming video
- TM5400
 - Ultralite Laptops
 - Microsoft Windows compatible
 - Computer makers backing Transmeta include:
 - IBM, Fujitsu, FIC, NEC, and Hitachi

