
1 
A GENERAL VIEW 

1.1 INTRODUCTION 

Real-time systems are computing systems that must react within precise time 
constraints to events in the environment. As a consequence, the correct behav­
ior of these systems depends not only on the value of the computation but also 
on the time at which the results are produced [SR88]. A reaction that occurs 
too late could be useless or even dangerous. Today, real-time computing plays 
a crucial role in our society, since an increasing number of complex systems 
rely, in part or completely, on computer control. Examples of applications that 
require real-time computing include 

Chemical and nuclear plant control. 

Control of complex production processes, 

Railway switching systems, 

Automotive applications. 

Flight control systems. 

Environmental acquisition and monitoring. 

Telecommunication systems. 

Industrial automation. 

Robotics, 

Military systems. 



C H A P T E R 1 

• Space missions, and 

• Virtual reality. 

Despite this large application domain, many researchers, developers, and tech­
nical managers have serious misconceptions about real-time computing [Sta88], 
and most of today's real-time control systems are still designed using ad hoc 
techniques and heuristic approaches. Very often, control applications with 
stringent time constraints are implemented by writing large portions of code 
in assembly language, programming timers, writing low-level drivers for device 
handling, and manipulating task and interrupt priorities. Although the code 
produced by these techniques can be optimized to run very efficiently, this 
approach has the following disadvantages: 

• Tedious programming. The implementation of large and complex ap­
plications in assembly language is much more difficult and time consuming 
than high-level programming. Moreover, the efficiency of the code strongly 
depends on the programmer's ability. 

• Difficult code understanding. Except for the programmers who de­
velop the application, very few people can fully understand the function­
ality of the software produced. Clever hand-coding introduces additional 
complexity and makes a program more difficult to comprehend. 

• Difficult software maintainability. As the the complexity of the pro­
gram increases, the modification of large assembly programs becomes dif­
ficult even for the original programmer. 

• Difficult verification of time constraints. Without the support of 
specific tools and methodologies for code and schedulability analysis, the 
verification of time constraints becomes practically impossible. 

The major consequence of this approach is that the control software produced 
by empirical techniques can be highly unpredictable. If all critical time con­
straints cannot be verified a priori and the operating system does not include 
specific features for handling real-time tasks, the system could apparently work 
well for a period of time, but it could collapse in certain rare, but possible, 
situations. The consequences of a failure can sometimes be catastrophic and 
may injure people or cause serious damage to the environment. 

A high percentage of accidents that occur in nuclear power plants, in space 
missions, or in defensive systems are often caused by software bugs in the 



A General View 

control system. In some cases, these accidents have caused huge economic 
losses or even catastrophic consequences including the loss of human lives. 

As an example, the first flight of the space shuttle was delayed, at considerable 
cost, because of a timing bug that arose from a transient CPU overload during 
system initialization on one of the redundant processors dedicated to the control 
of the aircraft [Sta88]. Although the shuttle control system was intensively 
tested, the timing error was never discovered before. Later, by analyzing the 
code of the processes, it has been found that there was only a 1 in 67 probability 
(about 1.5 percent) that a transient overload during initialization could push 
the redundant processor out of synchronization. 

Another software bug was discovered on the real-time control system of the 
Patriot missiles, used to protect Saudi Arabia during the Gulf War.^ When 
a Patriot radar sights a flying object, the on-board computer calculates its 
trajectory and, to ensure that no missiles are launched in vain, it performs a 
verification. If the flying object passes through a specific location, computed 
based on the predicted trajectory, then the Patriot is launched against the 
target, otherwise the phenomenon is classified as a false alarm. 

On February 25, 1991, the radar sighted a Scud missile directed at Saudi Arabia, 
and the on-board computer predicted its trajectory, performed the verification, 
but classified the event as a false alarm. A few minutes later, the Scud fell on 
the city of Dhahran, causing victims and enormous economic damage. Later 
on, it was discovered that, because of a subtle software bug, the real-time clock 
of the on-board computer was accumulating a delay of about 57 microseconds 
per minute. The day of the accident, the computer had been working for about 
100 hours (an exceptional condition that was never experienced before), thus 
accumulating a total delay of 343 milliseconds. This delay caused a prediction 
error in the verification phase of 687 meters! The bug was corrected on February 
26, the day after the accident. 

The examples of failures described above show that software testing, although 
important, does not represent a solution for achieving predictability in real-time 
systems. This is mainly due to the fact that, in real-time control applications, 
the program flow depends on input sensory data and environmental conditions, 
which cannot be fully replicated during the testing phase. As a consequence, 
the testing phase can provide only a partial verification of the software behavior, 
relative to the particular subset of data provided as input. 

^L'Espresso, Vol. XXXVIII, No. 14, 5 April 1992, p. 167. 



C H A P T E R 1 

A more robust guarantee of the performance of a real-time system under all 
possible operating conditions can be achieved only by using more sophisticated 
design methodologies, combined with a static analysis of the source code and 
specific operating systems mechanisms, purposely designed to support compu­
tation under time constraints. Moreover, in critical applications, the control 
system must be capable of handling all anticipated scenarios, including peak 
load situations, and its design must be driven by pessimistic assumptions on 
the events generated by the environment. 

In 1949, an aeronautical engineer of the U.S. Air Force, Captain Ed Mur­
phy, observed the evolution of his experiments and said: "If something can go 
wrong, it will go wrong." Several years later. Captain Ed Murphy became fa­
mous around the world, not for his work in avionics but for his phrase, simple 
but ineluctable, today known as Murphy's Law [Blo77, BI08O, BI088]. Since 
that time, many other laws on existential pessimism have been formulated to 
describe unfortunate events in a humorous fashion. Due to the relevance that 
pessimistic assumptions have on the design of real-time systems. Table 1.1 lists 
the most significant laws on the topic, which a software engineer should always 
keep in mind. 

1.2 W H A T DOES REAL TIME MEAN? 

1.2.1 The concept of t ime 

The main characteristic that distinguishes real-time computing from other 
types of computation is time. Let us consider the meaning of the words time 
and real more closely. 

The word time means that the correctness of the system depends not only on 
the logical result of the computation but also on the time at which the results 
are produced. 

The word real indicates that the reaction of the systems to external events must 
occur during their evolution. As a consequence, the system time (internal time) 
must be measured using the same time scale used for measuring the time in 
the controlled environment (external time). 

Although the term real time is frequently used in many application fields, it is 
subject to different interpretations, not always correct. Often, people say that 



A General View 

Murphy's General Law 

/ / something can go wrong, it will go wrong. 

Murphy's Constant 

Damage to an object is proportional to its value. 

Naeser's Law 

One can make something bomb-proof, not jinx-proof. 

Troutman Postulates 

1. Any software bug will tend to maximize the damage. 

2. The worst software bug will be discovered six months after the field test. 

Green's Law 

If a system is designed to be tolerant to a set of faults, there will always 
exist an idiot so skilled to cause a nontolerated fault. 

Corollary 

Dummies are always more skilled than measures taken to keep them 
from harm. 

Johnson's First Law 

/ / a system stops working, it will do it at the worst possible time. 

Sodd's Second Law 

Sooner or later, the worst possible combination of circumstances will 
happen. 

Corollary 

A system must always be designed to resist the worst possible combi­
nation of circumstances. 

Table 1.1 Murphy's laws on real-time systems. 



C H A P T E R 1 

a control system operates in real time if it is able to quickly react to external 
events. According to this interpretation, a system is considered to be real-time 
if it is fast. The term fast^ however, has a relative meaning and does not capture 
the main properties that characterize these types of systems. 

In nature, living beings act in real time in their habitat independently of their 
speed. For example, the reactions of a turtle to external stimuli coming from 
its natural habitat are as effective as those of a cat with respect to its habitat. 
In fact, although the turtle is much slower than a cat, in terms of absolute 
speed, the events that it has to deal with are proportional to the actions it can 
coordinate, and this is a necessary condition for any animal to survive within 
an environment. 

On the contrary, if the environment in which a biological system lives is modified 
by introducing events that evolve more rapidly than it can handle, its actions 
will no longer be as effective, and the survival of the animal is compromised. 
Thus, a quick fly can still be caught by a fly-swatter, a mouse can be captured 
by a trap, or a cat can be run down by a speeding car. In these examples, the 
fly-swatter, the trap, and the car represent unusual and anomalous events for 
the animals, out of their range of capabilities, which can seriously jeopardize 
their survival. The cartoons in Figure 1.1 schematically illustrate the concept 
expressed above. 

The previous examples show that the concept of time is not an intrinsic property 
of a control system, either natural or artificial, but that it is strictly related to 
the environment in which the system operates. It does not make sense to design 
a real-time computing system for flight control without considering the timing 
characteristics of the aircraft. Hence, the environment is always an essential 
component of any real-time system. Figure 1.2 shows a block diagram of a 
typical real-time architecture for controlling a physical system. 

Some people erroneously believe that it is not worth investing in real-time 
research because advances in computer hardware will take care of any real­
time requirements. Although advances in computer hardware technology will 
improve system throughput and will increase the computational speed in terms 
of millions of instructions per second (MIPS), this does not mean that the 
timing constraints of an application will be met automatically. In fact, whereas 
the objective of fast computing is to minimize the average response time of a 
given set of tasks, the objective of real-time computing is to meet the individual 
timing requirement of each task [Sta88]. 



A General View 

Figure 1.1 Both the mouse (a) and the turtle (b) behave in real time with 
respect to their natural habitat. Nevertheless, the survival of fast animals such 
as a mouse or a fly can be jeopardized by events (c and d) quicker than their 
reactive capabilities. 

However short the average response time can be, without a scientific method­
ology we will never be able to guarantee the individual timing requirements of 
each task in all possible circumstances. When several computational activities 
have different timing constraints, average performance has little significance for 
the correct behavior of the system. To better understand this issue, it is worth 
thinking about this little story^: 

There was a man who drowned crossing a stream with an average depth 
of six inches. 

Hence, rather than being fast, a real-time computing system should be pre­
dictable. And one safe way to achieve predictability is to investigate and em­
ploy new methodologies at every stage of the development of an application, 
from design to testing. 

•^From John Stankovic's notes. 



C H A P T E R 1 

Control 
System 

Sensory 

System 
Actuation 

System 

ENVIRONMENT 

\ y 

Figure 1.2 Block diagram of a generic real-time control system. 

At the process level, the main difference between a real-time and a non-real­
time task is that a real-time task is characterized by a deadline^ which is the 
maximum time within which it must complete its execution. In critical ap­
plications, a result produced after the deadline is not only late but wrong! 
Depending on the consequences that may occur because of a missed deadline, 
real-time tasks are usually distinguished in two classes, hard and soft: 

• A real-time task is said to be hard if missing its deadline may cause catas­
trophic consequences on the environment under control. 

• A real-time task is said to be soft if meeting its deadline is desirable for per­
formance reasons, but missing its deadline does not cause serious damage 
to the environment and does not jeopardize correct system behavior. 

A real-time operating system that is able to handle hard real-time tasks is called 
a hard real-time system. Typically, real-world applications include hard and soft 
activities, and therefore a hard real-time system should be designed to handle 
both hard and soft tasks using two different strategies. In general, when an 
application consists of a hybrid task set, the objective of the operating system 
should be to guarantee the individual timing constraints of the hard tasks while 
minimizing the average response time of the soft activities. 



A General View 

Examples of hard activities that may be present in a control application include 

Sensory data acquisition, 

Detection of critical conditions, 

Actuator servoing, 

Low-level control of critical system components, and 

Planning sensory-motor actions that tightly interact with the environment. 

Examples of soft activities include 

The command interpreter of the user interface, 

Handling input data from the keyboard, 

Displaying messages on the screen. 

Representation of system state variables, 

Graphical activities, and 

Saving report data. 

1.2.2 Limits of current real-time systems 

Most of the real-time computing systems used to support control applications 
are based on kernels [AL86, Rea86, HHPD87, SBG86], which are modified 
versions of timesharing operating systems. As a consequence, they have the 
same basic features found in timesharing systems, which are not suited to 
support real-time activities. The main characteristics of such real-time systems 
include 

Multitasking. A support for concurrent programming is provided through 
a set of system calls for process management (such as create, activate, ter­
minate, delay, suspend, and resume). Many of these primitives do not take 
time into account and, even worse, introduce unbounded delays on tasks' 
execution time that may cause hard tasks to miss their deadlines in an 
unpredictable way. 



10 C H A P T E R 1 

Priority-based scheduling. This scheduling mechanism is quite flexible, 
since it allows the implementation of several strategies for process man­
agement just by changing the rule for assigning priorities to tasks. Never­
theless, when application tasks have explicit time requirements, mapping 
timing constraints into a set of priorities may not be simple, especially 
in dynamic environments. The major problem comes from the fact that 
these kernels have a limited number of priority levels (typically 128 or 256), 
whereas task deadlines can vary in a much wider range. Moreover, in dy­
namic environments, the arrival of a new task may require the remapping 
of the entire set of priorities. 

Ability to quickly respond to external interrupts. This feature is 
usually obtained by setting interrupt priorities higher than process priori­
ties and by reducing the portions of code executed with interrupts disabled. 
Note that, although this approach increases the reactivity of the system to 
external events, it introduces unbounded delays on processes' execution. 
In fact, an application process will be always interrupted by a driver, even 
though it is more important than the device that is going to be served. 
Moreover, in the general case, the number of interrupts that a process can 
experience during its execution cannot be bounded in advance, since it 
depends on the particular environmental conditions. 

Basic mechanisms for process communication and synchroniza­
tion. Binary semaphores are typically used to synchronize tasks and 
achieve mutual exclusion on shared resources. However, if no access pro­
tocols are used to enter critical sections, classical semaphores can cause 
a number of undesirable phenomena, such as priority inversion, chained 
blocking, and deadlock, which again introduce unbounded delays on real­
time activities. 

Small kernel and fast context switch. This feature reduces system 
overhead, thus improving the average response time of the task set. How­
ever, a small average response time on the task set does not provide any 
guarantee on the individual deadlines of the tasks. On the other hand, a 
small kernel implies limited functionality, which affects the predictability 
of the system. 

Support of a real-time clock as an internal time reference. This 
is an essential feature for any real-time kernel that handles time-critical 
activities that interact with the environment. Nevertheless, in most com­
mercial kernels this is the only mechanism for time management. In many 
cases, there are no primitives for explicitly specifying timing constraints 
(such as deadlines) on tasks, and there is no mechanism for automatic 
activation of periodic tasks. 



A General View 11 

From the above features, it is easy to see that those types of real-time kernels 
are developed under the same basic assumptions made in timesharing systems, 
where tasks are considered as unknown activities activated at random instants. 
Except for the priority, no other parameters are provided to the system. As 
a consequence, computation times, timing constraints, shared resources, or 
possible precedence relations among tasks are not considered in the scheduling 
algorithm, and hence no guarantee can be performed. 

The only objectives that can be pursued with these systems is a quick reaction 
to external events and a "small" average response time for the other tasks. 
Although this may be acceptable for some soft applications, the lack of any 
form of guarantee precludes the use of these systems for those control applica­
tions that require stringent timing constraints that must be met to ensure safe 
behavior of the system. 

1.2.3 Desirable features of real-time systems 

Complex control applications that require hard timing constraints on tasks' 
execution need to be supported by highly predictable operating systems. Pre­
dictability can be achieved only by introducing radical changes in the basic 
design paradigms found in classical timesharing systems. 

For example, in any real-time control system, the code of each task is known 
a priori and hence can be analyzed to determine its characteristics in terms of 
computation time, resources, and precedence relations with other tasks. There­
fore, there is no need to consider a task as an unknown processing entity; rather, 
its parameters can be used by the operating system to verify its schedulability 
within the specified timing requirements. Moreover, all hard tasks should be 
handled by the scheduler to meet their individual deadlines, not to reduce their 
average response time. 

In addition, in any typical real-time application, the various control activities 
can be seen as members of a team acting together to accomplish one common 
goal, which can be the control of a nuclear power plant or an aircraft. This 
means that tasks are not all independent and it is not strictly necessary to 
support independent address spaces. 

In summary, there are some very important basic properties that real-time 
systems must have to support critical applications. They include 



12 C H A P T E R 1 

Timeliness. Results have to be correct not only in their value but also 
in the time domain. As a consequence, the operating system must provide 
specific kernel mechanisms for time management and for handling tasks 
with explicit time constraints and different criticalness. 

Design for peak load. Real-time systems must not collapse when they 
are subject to peak-load conditions, so they must be designed to manage 
all anticipated scenarios. 

Predictability. To guarantee a minimum level of performance, the system 
must be able to predict the consequences of any scheduling decision. If 
some task cannot be guaranteed within its time constraints, the system 
must notify this fact in advance, so that alternative actions can be planned 
in time to cope with the event. 

Fault tolerance. Single hardware and software failures should not cause 
the system to crash. Therefore, critical components of the real-time system 
have to be designed to be fault tolerant. 

Maintainability. The architecture of a real-time system should be de­
signed according to a modular structure to ensure that possible system 
modifications are easy to perform. 

1.3 ACHIEVING PREDICTABILITY 

One of the most important properties that a hard real-time system should 
have is predictability [SR90]. That is, based on the kernel features and on the 
information associated with each task, the system should be able to predict 
the evolution of the tasks and guarantee in advance that all critical timing 
constraints will be met. The reliability of the guarantee, however, depends on 
a range of factors, which involve the architectural features of the hardware and 
the mechanisms and policies adopted in the kernel, up to the programming 
language used to implement the application. 

The first component that affects the predictability of the scheduling is the pro­
cessor itself. The internal characteristics of the processor, such as instruction 
prefetch, pipelining, cache memory, and direct memory access (DMA) mecha­
nisms, are the first cause of nondeterminism. In fact, although these features 
improve the average performance of the processor, they introduce nondetermin-
istic factors that prevent a precise analysis of the worst-case execution times. 
Other important components that influence the execution of the task set are 



A General View 13 

the internal characteristics of the real-time kernel, such as the scheduling algo­
rithm, the synchronization mechanism, the types of semaphores, the memory 
management policy, the communication semantics, and the interrupt handling 
mechanism. 

In the rest of this chapter, the main sources of nondeterminism are considered 
in more detail, from the physical level up to the programming level. 

1.3.1 D M A 

Direct memory access (DMA) is a technique used by many peripheral devices 
to transfer data between the device and the main memory. The purpose of 
DMA is to relieve the central processing unit (CPU) of the task of controlling 
the input/output (I/O) transfer. Since both the CPU and the I/O device share 
the same bus, the CPU has to be blocked when the DMA device is performing 
a data transfer. Several different transfer methods exist. 

One of the most common methods is called cycle stealing, according to which 
the DMA device steals a CPU memory cycle in order to execute a data transfer. 
During the DMA operation, the I/O transfer and the CPU program execution 
run in parallel. However, if the CPU and the DMA device require a memory 
cycle at the same time, the bus is assigned to the DMA device and the CPU 
waits until the DMA cycle is completed. Using the cycle stealing method, there 
is no way of predicting how many times the CPU will have to wait for DMA 
during the execution of a task; hence the response time of a task cannot be 
precisely determined. 

A possible solution to this problem is to adopt a different technique, which re­
quires the DMA device to use the memory time-slice method [SR88]. According 
to this method, each memory cycle is split into two adjacent time slots: one 
reserved for the CPU and the other for the DMA device. This solution is more 
expensive than cycle stealing but more predictable. In fact, since the CPU and 
DMA device do not conflict, the response time of the tasks do not increase due 
to DMA operations and hence can be predicted with higher accuracy. 

1.3.2 Cache 

The cache is a fast memory that is inserted as a buffer between the CPU and the 
random access memory (RAM) to speed up processes' execution. It is physically 



14 C H A P T E R 1 

located after the memory management unit (MMU) and is not visible at the 
software programming level. Once the physical address of a memory location is 
determined, the hardware checks whether the requested information is stored 
in the cache: if it is, data are read from the cache; otherwise the information is 
taken from the RAM, and the content of the accessed location is copied in the 
cache along with a set of adjacent locations. In this way, if the next memory 
access is done to one of these locations, the requested data can be read from 
the cache, without having to access the memory. 

This buffering technique is motivated by the fact that statistically the most 
frequent accesses to the main memory are limited to a small address space, a 
phenomenon called program locality. For example, it has been observed that 
with a 1 Mb memory and a 8 Kbyte cache, the data requested from a program 
are found in the cache 80 percent of the time {hit ratio). 

The need for having a fast cache appeared when memory was much slower. 
Today, however, since memory has an access time almost comparable to that 
of the cache, the main motivation for having a cache is not only to speed up 
process execution but also to reduce conflicts with other devices. In any case, 
the cache is considered as a processor attribute that speeds up the activities of 
a computer. 

In real-time systems, the cache introduces some degree of nondeterminism. 
In fact, although statistically the requested data are found in the cache 80 
percent of the time, it is also true that in the other 20 percent of the cases the 
performance degrades. This happens because, when data is not found in the 
cache (cache fault or miss), the access time to memory is longer, due to the 
additional data transfer from RAM to cache. Furthermore, when performing 
write operations in memory, the use of the cache is even more expensive in terms 
of access time because any modification made on the cache must be copied to 
the memory in order to maintain data consistency. Statistical observations 
show that 90 percent of the memory accesses are for read operations, whereas 
only 10 percent are for writes. 

Statistical observations, however, can provide only an estimation of the average 
behavior of an application but cannot be used for deriving worst-case bounds. 
To perform worst-case analysis, in fact, we should assume a cache fault for each 
memory access. The consequence of this is that, to obtain a higher degree of 
predictability at the low level, it would be more efficient to have processors 
without cache or with the cache disabled. In other approaches, the influence of 
the cache on the task execution time is taken into account by a multiplicative 
factor, which depends on an estimated percentage of cache faults. A more 



A General View 15 

precise estimation of the cache behavior can be achieved by analyzing the code 
of the tasks and estimating the execution times by using a mathematical model 
of the cache. 

1.3.3 Interrupts 

Interrupts generated by I/O peripheral devices represent a big problem for the 
predictability of a real-time system because, if not properly handled, they can 
introduce unbounded delays during process execution. In almost any operating 
system, the arrival of an interrupt signal causes the execution of a service 
routine (driver)^ dedicated to the management of its associated device. The 
advantage of this method is to encapsulate all hardware details of the device 
inside the driver, which acts as a server for the application tasks. For example, 
in order to get data from an I/O device, each task must enable the hardware to 
generate interrupts, wait for the interrupt, and read the data from a memory 
buffer shared with the driver, according to the following protocol: 

<enable device interrupts> 
<wait for interrupt> 

<get the result> 

In many operating systems, interrupts are served using a fixed priority scheme, 
according to which each driver is scheduled based on a static priority, higher 
than process priorities. This assignment rule is motivated by the fact that 
interrupt handling routines usually deal with I/O devices that have real-time 
constraints, whereas most application programs do not. In the context of real­
time systems, however, this assumption is certainly not valid because a control 
process could be more urgent than an interrupt handling routine. Since, in 
general, it is very difficult to bound a priori the number of interrupts that 
a task may experience, the delay introduced by the interrupt mechanism on 
tasks' execution becomes unpredictable. 

In order to reduce the interference of the drivers on the application tasks and 
still perform I/O operations with the external world, the peripheral devices 
must be handled in a different way. In the following, three possible techniques 
are illustrated. 



16 C H A P T E R 1 

Approach A 

The most radical solution to eliminate interrupt interference is to disable all 
external interrupts, except the one from the timer (necessary for basic system 
operations). In this case, all peripheral devices must be handled by the appli­
cation tasks, which have direct access to the registers of the interfacing boards. 
Since no interrupt is generated, data transfer takes place through polling. 

The direct access to I/O devices allows great programming flexibility and elim­
inates the delays caused by the drivers' execution. As a result, the time needed 
for transferring data can be precisely evaluated and charged to the task that 
performs the operation. Another advantage of this approach is that the kernel 
does not need to be modified as the I/O devices are replaced or added. 

The main disadvantage of this solution is a low processor efficiency on I/O op­
erations, due to the busy wait of the tasks while accessing the device registers. 
Another minor problem is that the application tasks must have the knowledge 
of all low-level details of the devices that they want to handle. However, this 
can be easily solved by encapsulating all device-dependent routines in a set of 
library functions that can be called by the application tasks. This approach is 
adopted in RK, a research hard real-time kernel designed to support multisen-
sory robotics applications [LKP88]. 

Approach B 

As in the previous approach, all interrupts from external devices are disabled, 
except the one from the timer. Unlike the previous solution, however, the 
devices are not directly handled by the application tasks but are managed in 
turn by dedicated kernel routines, periodically activated by the timer. 

This approach eliminates the unbounded delays due to the execution of inter­
rupt drivers and confines all I/O operations to one or more periodic kernel 
tasks, whose computational load can be computed once and for all and taken 
into account through a specific utilization factor. In some real-time systems, 
I/O devices are subdivided into two classes based on their speed: slow devices 
are multiplexed and served by a single cyclical I/O process running at a low 
rate, whereas fast devices are served by dedicated periodic system tasks, run­
ning at higher frequencies. The advantage of this approach with respect to the 
previous one is that all hardware details of the peripheral devices can be encap­
sulated into kernel procedures and do not need to be known to the application 
tasks. 



A General View 17 

Because the interrupts are disabled, the major problem of this approach is 
due to the busy wait of the kernel I/O handling routines, which makes the 
system less efficient during the I/O operations. With respect to the previous 
approach, this case is characterized by a little higher system overhead, due to 
the communication required among the application tasks and the I/O kernel 
routines for exchanging I/O data. Finally, since the device handling routines are 
part of the kernel, it has to be modified when some device is replaced or added. 
This type of solution is adopted in the MARS system [DRSK89, KDK+89]. 

Approach C 

A third approach that can be adopted in real-time systems to deal with the I/O 
devices is to leave all external interrupts enabled, while reducing the drivers 
to the least possible size. According to this method, the only purpose of each 
driver is to activate a proper task that will take care of the device management. 
Once activated, the device manager task executes under the direct control of 
the operating system, and it is guaranteed and scheduled just like any other 
application task. In this way, the priority that can be assigned to the device 
handling task is completely independent from other priorities and can be set 
according to the application requirements. Thus a control task can have a 
higher priority than a device handling task. 

The idea behind this approach is schematically illustrated in Figure 1.3. The 
occurrence of event E generates an interrupt, which causes the execution of 
a driver associated with that interrupt. Unlike the traditional approach, this 
driver does not handle the device directly but only activates a dedicated task, 
JE, which will be the actual device manager. 

event E E 
-J:^ 

Driver associated 
with event E 

Activation 
of task 

\ ^ 

Task J £ 

Handling 

of event 

E 

Figure 1.3 Activation of a device-handling task. 



18 CHAPTER 1 

The major advantage of this approach with respect to the previous ones is to 
eUminate the busy wait during I/O operations. Moreover, compared to the 
traditional technique, the unbounded delays introduced by the drivers dur­
ing tasks' execution are also drastically reduced (although not completely re­
moved), so the task execution times become more predictable. As a matter 
of fact, a little unbounded overhead due to the execution of the small drivers 
still remains in the system, and it should be taken into account in the guar­
antee mechanism. However, it can be neglected in most practical cases. This 
type of solution is adopted in the ARTS system [TK88, TM89], in HARTIK 
[BD93, But93], and in SPRING [SR91]. 

1.3,4 System calls 

System predictability also depends on how the kernel primitives are imple­
mented. In order to precisely evaluate the worst-case execution time of each 
task, all kernel calls should be characterized by a bounded execution time, used 
by the guarantee mechanism while performing the schedulability analysis of the 
application. In addition, in order to simplify this analysis, it would be desir­
able that each kernel primitive be preemptable. In fact, any nonpreemptable 
section could possibly delay the activation or the execution of critical activities, 
causing a timing fault to hard deadlines. 

1.3,5 Semaphores 

The typical semaphore mechanism used in traditional operating systems is not 
suited for implementing real-time applications because it is subject to the prior­
ity inversion phenomenon, which occurs when a high-priority task is blocked by 
a low-priority task for an unbounded interval of time. Priority inversion must 
absolutely be avoided in real-time systems, since it introduces nondeterministic 
delays on the execution of critical tasks. 

For the mutual exclusion problem, priority inversion can be avoided by adopt­
ing particular protocols that must be used every time a task wants to enter a 
critical section. For instance, efficient solutions are provided by Basic Prior­
ity Inheritance [SRL90], Priority Ceiling [SRL90], and Stack Resource Policy 
[Bak91]. These protocols will be described and analyzed in Chapter 7. The 
basic idea behind these protocols is to modify the priority of the tasks based 
on the current resource usage and control the resource assignment through a 



A General View 19 

test executed at the entrance of each critical section. The aim of the test is to 
bound the maximum blocking time of the tasks that share critical sections. 

The implementation of such protocols may requires a substantial modification 
of the kernel, which concerns not only the wait and signal calls but also some 
data structures and mechanisms for task management. 

1.3.6 Memory management 

Similarly to other kernel mechanisms, memory management techniques must 
not introduce nondeterministic delays during the execution of real-time activi­
ties. For example, demand paging schemes are not suitable to real-time appli­
cations subject to rigid time constraints because of the large and unpredictable 
delays caused by page faults and page replacements. Typical solutions adopted 
in most real-time systems adhere to a memory segmentation rule with a fixed 
memory management scheme. Static partitioning is particularly efficient when 
application programs require similar amounts of memory. 

In general, static allocation schemes for resources and memory management in­
crease the predictability of the system but reduce its flexibility in dynamic en­
vironments. Therefore, depending on the particular application requirements, 
the system designer has to make the most suitable choices for balancing pre­
dictability against flexibility. 

1.3.7 Programming language 

Besides the hardware characteristics of the physical machine and the internal 
mechanisms implemented in the kernel, there are other factors that can deter­
mine the predictability of a real-time system. One of these factors is certainly 
the programming language used to develop the application. As the complexity 
of real-time systems increases, high demand will be placed on the programming 
abstractions provided by languages. 

Unfortunately, current programming languages are not expressive enough to 
prescribe certain timing behavior and hence are not suited for realizing pre­
dictable real-time applications. For example, the Ada language (demanded by 
the Department of Defense of the United States for implementing embedded 
real-time concurrent applications) does not allow the definition of explicit time 
constraints on tasks' execution. The delay statement puts only a lower bound 



20 C H A P T E R 1 

on the time the task is suspended, and there is no language support to guar­
antee that a task cannot be delayed longer than a desired upper bound. The 
existence of nondeterministic constructs, such as the select statement, prevents 
the performing of a reliable worst-case analysis of the concurrent activities. 
Moreover, the lack of protocols for accessing shared resources allows a high-
priority task to wait for a low-priority task for an unbounded duration. As a 
consequence, if a real-time application is implemented using the Ada language, 
the resulting timing behavior of the system is likely to be unpredictable. 

Recently, new high-level languages have been proposed to support the develop­
ment of hard real-time applications. For example, Real-Time Euclid [KS86] is a 
programming language specifically designed to address reliability and guaran­
teed schedulability issues in real-time systems. To achieve this goal, Real-Time 
Euclid forces the programmer to specify time bounds and timeout exceptions in 
all loops, waits, and device accessing statements. Moreover, it imposes several 
programming restrictions, such as the ones listed below: 

• Absence of dynamic data structures. Third-generation languages 
normally permit the use of dynamic arrays, pointers, and arbitrarily long 
strings. In real-time languages, however, these features must be eliminated 
because they would prevent a correct evaluation of the time required to 
allocate and deallocate dynamic structures. 

• Absence of recursion. If recursive calls were permitted, the schedu­
lability analyzer could not determine the execution time of subprograms 
involving recursion or how much storage will be required during execution. 

• Time-bounded loops. In order to estimate the duration of the cycles at 
compile time, Real-Time Euclid forces the programmer to specify for each 
loop construct the maximum number of iterations. 

Real-Time Euclid also allows the classification of processes as periodic or ape­
riodic and provides statements for specifying task timing constraints, such as 
activation time and period, as well as system timing parameters, such as the 
time resolution. 

Another high-level language for programming hard real-time applications is 
Real-Time Concurrent C [GR91]. It extends Concurrent C by providing fa­
cilities to specify periodicity and deadline constraints, to seek guarantees that 
timing constraints will be met, and to perform alternative actions when either 
the timing constraints cannot be met or guarantees are not available. With re­
spect to Real-Time Euclid, which has been designed to support static real-time 



A General View 21 

systems, where guarantees are made at compile time, Real-Time Concurrent 
C is oriented to dynamic systems, where tasks can be activated at run time. 
Another important feature of Real-Time Concurrent C is that it permits the 
association of a deadline with any statement, using the following construct: 

within deadline (d) statement-1 

[else statement-2] 

If the execution of statement-1 starts at time t and is not completed at time 
(t-\-d), then its execution is terminated and statement-2^ if specified, is executed. 

Clearly, any real-time construct introduced in a language must be supported 
by the operating system through dedicated kernel services, which must be de­
signed to be efficient and analyzable. Among all kernel mechanisms that in­
fluence predictability, the scheduling algorithm is certainly the most important 
factor, since it is responsible for satisfying timing and resource contention re­
quirements. 

In the rest of this book, several scheduling algorithms are illustrated and an­
alyzed under different constraints and assumptions. Each algorithm is car-
acterized in terms of performace and complexity to assist a designer in the 
development of reliable real-time applications. 

Exercises 

1.1 Explain the difference between fast computing and real-time computing. 

1.2 What are the main limitations of the current real-time kernels for the 
development of critical control applications? 

1.3 Discuss the features that a real-time system should have for exhibiting 
a predictable timing behavior. 

1.4 Describe the approches that can be used in a real-time system to handle 
peripheral I/O devices in a predictable fashion. 

1.5 Which programming restrictions should be used in a programming lan­
guage to permit the analysis of real-time applications? Suggest some 
extensions that could be included in a language for real-time systems. 




