
11 
EXAMPLES OF REAL-TIME 

SYSTEMS 

11.1 INTRODUCTION 

Current operating systems having real-time characteristics can be divided into 
three main categories: 

1. Priority-based kernel for embedded applications, 

2. Real-time extensions of timesharing operating systems, and 

3. Research operating systems. 

The first category includes many commercial kernels (such as VRTX32, pSOS, 
0S9, VxWorks, Chorus, and so on) that, for many aspects, are optimized 
versions of timesharing operating systems. In general, the objective of such 
kernels is to achieve high performance in terms of average response time to 
external events. As a consequence, the main features that distinguish these 
kernels are a fast context switch, a small size, efficient interrupt handling, the 
ability to keep process code and data in main memory, the use of preemptable 
primitives, and the presence of fast communication mechanisms to send signals 
and events. 

In these systems, time management is realized through a real-time clock, which 
is used to start computations, generate alarm signals, and check timeouts on 
system services. Task scheduling is typically based on fixed priorities and does 
not consider explicit time constraints into account, such periods or deadlines. 
As a result, in order to handle real-time activities, the programmer has to map 
a set of timing constraints into a set of fixed priorities. 
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Interprocess communication and synchronization usually occur by means of bi­
nary semaphores, mailboxes, events, and signals. However, mutually exclusive 
resources are seldom controlled by access protocols that prevent priority inver­
sion; hence, blocking times on critical sections are practically unbounded. Only 
a few kernels (such as VxWorks) support a priority inheritance protocol and 
provide a special type of semaphores for this purpose. 

The second category of operating systems includes the real-time extensions 
of commercial timesharing systems. For instance, RT-UNIX and RT-MACH 
represent the real-time extensions of UNIX and MACH, respectively. 

The advantage of this approach mainly consists in the use of standard periph­
eral devices and interfaces that allow to speed up the development of real-time 
applications and simplify portability on different hardware platforms. On the 
other hand, the main disadvantage of such extensions is that their basic ker­
nel mechanisms are not appropriate for handling computations with real-time 
constraints. For example, the use of fixed priorities can be a serious limitation 
in applications that require a dynamic creation of tasks; moreover, a single 
priority can be reductive to represent a task with different attributes, such as 
importance, deadline, period, periodicity, and so on. 

There are other internal characteristics of timesharing operating systems that 
are inappropriate for supporting the real-time extensions. For example, most 
internal queues are handled with a FIFO policy, which is often preserved even 
in the real-time version of the system. In some system, the virtual memory 
management mechanism does not allow to lock pages in main memory; hence, 
page-fault handling may introduce large and unbounded delays on process ex­
ecution. Other delays are introduced by non-preemptable system calls, by 
synchronous communication channels, and by the interrupt handling mecha­
nism. These features degrade the predictability of the system and prevent any 
form of guarantee on the application tasks. 

The observations above are sufficient to conclude that the real-time extensions 
of timesharing operating systems can only be used in noncritical real-time appli­
cations, where missing timing constraints does not cause serious consequences 
on the controlled environment. 

The lack of commercial operating systems capable of efficiently handling task 
sets with hard timing constraints, induced researchers to investigate new com­
putational paradigms and new scheduling strategies aimed at guaranteeing a 
highly predictable timing behavior. The operating systems conceived with such 
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a novel software technology are called hard real-time operating systems and form 
the third category of systems outlined above. 

The main characteristics that distinguish this new generation of operating sys­
tems include 

• The ability to treat tasks with explicit timing constraints, such periods 
and deadlines; 

• The presence of guarantee mechanisms that allow to verify in advance 
whether the application constraints can be met during execution; 

• The possibility to characterize tasks with additional parameters, which are 
used to analyze the dynamic performance of the system; 

• The use of specific resource access protocols that avoid priority inversion 
and limit the blocking time on mutually exclusive resources. 

Expressive examples of operating systems that have been developed according 
to these principles are CHAOS [SGB87], MARS [KDK+89], Spring [SR91], 
ARTS [TM89], RK [LKP88], TIMIX [LK88], MARUTI [LTCA89], HARTOS 
[KKS89], YARTOS [JSP92], and HARTIK [But93]. Most of these kernels do 
not represent a commercial product but are the result of considerable efforts 
carried out in universities and research centers. 

The main differences among the kernels mentioned above concern the support­
ing architecture on which they have been developed, the static or dynamic 
approach adopted for scheduling shared resources, the types of tasks handled 
by the kernel, the scheduling algorithm, the type of analysis performed for veri­
fying the schedulability of tasks, and the presence of fault-tolerance techniques. 

In the rest of this chapter, some of these systems are illustrated to provide a 
more complete view of the techniques and methodologies that can be adopted to 
develop a new generation of real-time operating systems with highly predictable 
behavior. 

11.2 MARS 

MARS (MAintainable Real-time System) is a fault-tolerant distributed real­
time system developed at the University of Vienna [DRSK89, KDK+89] to 
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CI = Cluster Interface 

cluster 

Figure 11.1 The MARS target architecture. 

support complex control applications (such as air traffic control systems, rail­
way switching systems, and so on) where hard deadlines are imposed by the 
controlled environment. 

The MARS target architecture consists of a set of computing nodes {clusters) 
connected through high speed communication channels. Each cluster is com­
posed of a number of acquisition and processing units (components) intercon­
nected by a synchronous real-time bus, the MARS-bus. Each component is a 
self-contained computer on which a set of real-time application tasks and an 
identical copy of the MARS operating system is executed. A typical configura­
tion of the MARS target architecture is outlined in Figure 11.1. 

The main feature that distinguishes MARS from other distributed real-time 
systems is its deterministic behavior even in peak-load conditions; that is, when 
all possible events occur at their maximum specified frequency. Fault-tolerance 
is realized at the cluster level through active redundant components, which 
are grouped in a set of Fault-Tolerant Units (FTUs). A high error-detection 
coverage is achieved by the use of software mechanisms at the kernel level and 
hardware mechanisms at the processor level. 
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Within an FTU, a single redundant component fails silently; that is, it either 
operates correctly or does not produce any results. This feature facilitates 
system maintainability and extensibility, since redundant components may be 
removed from a running cluster, repaired, and reintegrated later, without af­
fecting the operation of the cluster. Moreover, a component can be expanded 
into a new cluster that shows the same I/O behavior. In this way, a new cluster 
can be designed independently from the rest of the system, as long as the I/O 
characteristics of the interface component remain unchanged. 

Predictability under peak-load situations is achieved by using a static schedul­
ing approach combined with a time-driven dispatching pohcy. In MARS, the 
entire schedule is precomputed off-line considering the timing characteristics 
of the tasks, their cooperation by message exchange, as well as the protocol 
used to access the bus. The resulting tables produced by the off-line scheduler 
are then linked to the core image of each component and executed in a time-
driven fashion. Dynamic scheduling is avoided by treating all critical activities 
as periodic tasks. 

Although the static approach limits the flexibility of the system in dynamic 
environments, it is highly predictable and minimizes the runtime overhead for 
task selection. Moreover, since scheduling decisions are taken off-line, a static 
approach allows the use of sophisticated algorithms to solve problems (such 
as jitter control and fault-tolerance requirements) that are more complex than 
those typically handled in dynamic systems. 

All MARS components have access to a common global time base, the system 
time, with known synchronization accuracy. It is used to test the validity of 
real-time information, detect timing errors, control the access to the real-time 
bus, and discard the redundant information. 

Prom the hardware point of view, each MARS component is a slightly modified 
standard single-board computer, consisting of a Motorola 680x0 CPU, a Local 
Area Network Controller for Ethernet (LANCE), a Clock Synchronization Unit 
(CSU), two RS-232 serial interfaces, and one Small Computer System Interface 
(SCSI). 

The software residing in a MARS component can be split into the following 
three classes: 

1. Operating System KerneL Its primary goals are resource management 
(CPU, memory, bus, and so on) and hardware transparency. 
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2. Hard Real-Time Tasks (HRT-tasks). HRT-tasks are periodic activities 
that receive, process, and send messages. Each instance of a task is charac­
terized by a hard deadUne, within which it has to be completed. The set of 
HRT-tasks consists of appHcation tasks and system tasks, which perform 
specific functions of the kernel, such as time synchronization and protocol 
conversions. 

3. Soft Real-Time Tasks (SRT-tasks). SRT-tasks are activities that are 
not subject to strict deadlines. Usually, they are aperiodic tasks scheduled 
in background, during the idle time of the processor. 

All hardware details are hidden within the kernel, and all kernel data structures 
cannot be accessed directly. Both application tasks and system tasks access the 
kernel only by means of defined system calls. To facilitate porting of MARS 
to other hardware platforms, most of the operating system code is written in 
standard C language. 

11.2.1 Communication 

In MARS, communication among tasks, components, clusters, and peripherals 
occurs through a uniform message passing mechanism. All messages are sent 
periodically to exchange information about the state of the environment or 
about an internal state. State-messages are not consumed when read, so they 
can be read more than once by an arbitrary number of tasks. Each time a new 
version of a message is received, the previous version is overwritten, and the 
state described in the message is updated. 

All MARS messages have an identical structure, consisting of a standard header, 
a constant length, and a standard trailer. Besides the LAN dependent standard 
fields, the header contains several other fields that include the observation time 
of the information contained in the message, the validity interval, as well as 
the send and receive time stamped on the message by the SCU. The trailer 
basically contains a checksum. The structure of the message body is defined 
by the application programmer, whereas its size is fixed and predefined in the 
system. 

Since messages describe real-time entities that cannot be altered by tasks, mes­
sages are kept in read-only buffers of the operating system. Message exchange 
between the kernel and the application tasks does not require an explicit copy 
of the message, but it is performed by passing a pointer. In MARS, process 
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Figure 11.2 Timing of the MARS-bus using the TDMA-protocol with re­
dundant message transmission. 

communication is completely asynchronous; hence, there is no need for explicit 
flow control. If the sender has a frequency higher than that of the receiver, the 
state is updated faster than read, but no buffer overflow will occur because the 
latest message replaces the previous one. 

Messages among components travel on the MARS-bus, which is an Ethernet 
link controlled by a TDMA-protocol (Time Division Multiple Access). This 
protocol provides a collision-free access to the Ethernet even under peak-load 
conditions. A disadvantage of the TDMA-protocol is a low efficiency under low-
load conditions because the sending capacity of a component cannot exceed a 
fixed limit (approximately equal to the network capacity divided by the number 
of components in the cluster) even if no other component in the cluster has to 
send messages. Nevertheless, since MARS has mainly been designed to be 
predictable even under peak-load conditions, TDMA is the protocol that best 
satisfies this requirement. As shown in Figure 11.2, each message is sent twice 
on the MARS-bus. 

In order to detect timing errors during communication, each message receives 
two time stamps from the CSU (when sent and when received), with an accu­
racy of about three microseconds. 

11.2.2 Scheduling 

In MARS, the scheduling of hard real-time activities is performed off-line con­
sidering the worst-case execution times of tasks, their interaction by message 
exchange, and the assignment of messages to TDMA slots. The static schedule 
produced by the off-line scheduler is stored in a table and loaded into each 
individual component. At runtime, the scheduling table is executed by a dis­
patcher, which performs task activation and context switches at predefined time 
instants. The disadvantage of this scheduling approach is that no tasks can be 
created dynamically, so the system is inflexible and cannot adapt to changes 
in the environment. On the other hand, if the assumptions on the controlled 
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environment are valid, the static approach is quite predictable and minimizes 
the runtime overhead for making scheduUng decisions. 

Scheduling techniques that increase the flexibility of MARS in dynamic envi­
ronments have been proposed by Fohler for realizing changes of operational 
modes [Foh93] and allowing on-line service of aperiodic tasks [Foh95]. 

The MARS system also allows diflFerent scheduling strategies to be adopted in 
different operating phases. That is, during the design phase, the programmer 
of the application can define several operational phases of the system char­
acterized by diff'erent task sets, each handled by an appropriate scheduling 
algorithm. For example, for an aircraft control application, five phases can be 
distinguished: loading, taking off, flying, landing, and unloading. And each 
phase may require different tasks or a different scheduling policy. The change 
between two schedules {mode change) may be caused either by an explicit sys­
tem call in an application task or by the reception of a message associated with 
a scheduling switch. 

Two types of scheduling switches are supported by the kernel: a consistent 
switch and an immediate switch. When performing a consistent scheduling 
switch, tasks can only be suspended at opportune instants (determined dur­
ing the design stage) so that they are guaranteed to remain in a consistent 
state with the environment. The immediate switch, instead, does not preserve 
consistency, but it guarantees that switching will be performed as soon as pos­
sible; that is, at the next invocation of the major interrupt handler, which has 
a period of eight milliseconds. 

11.2.3 Interrupt handling 

In MARS, all interrupts to the CPU are disabled, except for the clock in­
terrupt from the CSU. Allowing each device to interrupt the CPU, in fact, 
would cause an unpredictable load on the system that could jeopardize the 
guarantee performed on the hard tasks. A priority scheme for interrupts has 
also been discarded because it would give advantage to high-priority devices, 
while low-priority devices might starve for the CPU, causing missed deadlines 
in consequence. Since interrupts are disabled, peripheral devices are polled 
periodically within the clock interrupt handler. 

The clock interrupt handler is split into two sections activated with diflFerent fre­
quencies. The first section {minor handler), written in assembler for efficiency 
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Figure 11.3 The Spring distributed architecture. 

reasons, is carried out every millisecond. The second section {major handler), 
written in C, is activated every 8 milliseconds, immediately after the execution 
of the first part. The minor interrupt handler may suspend any system call, 
whereas the major handler is delayed until the end of the system call. 

11.3 SPRING 

Spring is a real-time distributed operating system developed at the University 
of Massachusetts at Amherst [SR89, SR91] for supporting large complex con­
trol applications characterized by hard timing constraints. The Spring target 
architecture is illustrated in Figure 11.3 and consists of a set of multiproces­
sor nodes connected through a high speed communication network. Each node 
contains three types of processors: one or more application processors, a system 
processor, and an I/O subsystem (front end). 

Application processors are dedicated to the execution of critical application 
tasks that have been guaranteed by the system. 

The system processor is responsible for executing the scheduling algorithm 
(a crucial part of the system) and supporting all kernel activities. Such 
a physical separation between system activities and application activities 



332 C H A P T E R 11 

allows to reduce the system overhead on the application processors and 
remove unpredictable delays on tasks' execution. 

The I/O subsystem is responsible for handling non-critical interrupts, com­
ing from slow peripheral devices or from sensors that do not have a pre­
dictable response time. Time critical I/O is directly performed on the 
system processor. 

An identical copy of the Spring kernel is executed on each application processor 
and on the system processor, whereas the I/O processor can be controlled by 
any commercial priority-based operating system. Within a node, each process­
ing unit consists of a commercial Motorola MVME136A board, plugged in a 
VME bus. On this board, part of the main memory is local to the processor 
and is used for storing programs and private data, while another part is shared 
among the other processors through the VME bus. 

Spring allows dynamic task activation, however the assignment of tasks to pro­
cessors is done statically to improve speed and eliminate unpredictable delays. 
To increase efficiency at runtime, some tasks can be loaded on more processors, 
so that, if an overload occurs when a task is activated, the task can be executed 
on another processor without large overhead. 

The scheduling mechanism is divided in four modules: 

At the lowest level, there is a dispatcher running on each application pro­
cessor. It simply removes the next ready task from a system task table 
that contains all guaranteed tasks arranged in the proper order. The rest 
of the scheduling modules are executed on the system processor. 

The second module consists of a local scheduler (resident on the system 
processor), which is responsible for dynamically guaranteeing the schedu-
lability of a task set on a particular application processor. Such a scheduler 
produces a system task table that is then passed to the application pro­
cessor. 

The third scheduling level is a distributed scheduler that tries to find a 
node available in the case in which a task cannot be locally guaranteed. 

The fourth scheduling module is a metalevel controller that adapts the 
various parameters of the scheduling algorithm to the different load con­
ditions. 
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11.3.1 Task management 

In Spring, tasks are classified based on two main criteria: importance and 
timing requirements. The importance of a task is the value gained by the system 
when the task completes before its deadline. Timing requirements represent the 
real-time specification of a task and may range over a wide spectrum, including 
hard or soft deadlines, periodic or aperiodic execution, or no explicit timing 
constraints. 

Based on importance and timing requirements, three types of tasks are defined 
in Spring: critical tasks, essential tasks, and unessential tasks. 

Critical tasks are those tasks that must absolutely meet their deadlines; 
otherwise, a catastrophic result might occur on the controlled system. Due 
to their criticalness, these tasks must have all resources reserved in advance 
and must be guaranteed off'-line. Usually, in real-world applications, the 
number of critical tasks is relatively small compared to the total number 
of tasks in the system. 

Essential tasks are those tasks that are necessary to the operation of the 
system; however, a missed deadline does not cause catastrophic conse­
quences, but only degrades system's performance. The number of essential 
tasks in typically large in complex control applications; hence, they must 
be handled dynamically or it would be impossible (or highly expensive) to 
reserve enough resources for all of them. 

Unessential tasks are processes with or without deadlines that are executed 
in background; that is, during the idle times of the processor. For this rea­
son, unessential tasks do not affect the execution of critical and essential 
tasks. Long-range planning tasks and maintenance activities usually be­
long to this class. 

Spring tasks are characterized by a large number of parameters. In particular, 
for each task, the user has to specify a worst-case execution time, a deadline, 
an interarrival time, a type (critical, essential, or unessential), a preemptive 
or non-preemptive property, an importance level, a list of resources needed, a 
precedence graph, a list of tasks with which the task communicates, and a list 
of nodes on which the task code has to be loaded. This information is used by 
the scheduling algorithm to find a feasible schedule. 
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11.3.2 Scheduling 

The objective of the Spring scheduUng algorithm is to dynamically guarantee 
the execution of newly arrived tasks in the context of the current load. The 
feasibility of the schedule is determined considering many issues, such as timing 
constraints, precedence relations, mutual exclusion on shared resources, non-
preemption properties, and fault-tolerant requirements. Since this problem 
is NP-hard, the guarantee algorithm uses a heuristic approach to reduce the 
search space and find a solution in polynomial time. It starts at the root of the 
search tree (an empty schedule) and tries to find a leaf (a complete schedule) 
corresponding to a feasible schedule. 

On each level of the search, a heuristic function H is applied to each of the tasks 
that remain to be scheduled. The task with the smallest value determined by 
the heuristic function H is selected to extend the current schedule. The heuristic 
function is a very flexible mechanism that allows to easily define and modify 
the scheduHng policy of the kernel. For example, li H = ai (arrival time), 
the algorithm behaves as First Come First Served; li H — Ci (computation 
time), it works as Shortest Job First; whereas \i H = di (absolute deadline), 
the algorithm is equivalent to Earliest Deadline First. 

To consider resource constraints in the scheduling algorithm, each task TI has 
to declare a binary array of resources Ri — [Ri{i),..., Rr(i)], where Rk{i) — 0 
if Ti does not use resource Rk, and Rk{i) = 1 if r̂  uses Rk in exclusive mode. 
Given a partial schedule, the algorithm determines, for each resource Rk, the 
earliest time the resource is available. This time is denoted as EATk (Earliest 
Available Time). Thus, the earliest start time Test{i) that task TI can begin 
the execution without blocking on shared resources is 

TesS) = max[ai,max{EATk)], 
k 

where ai is the arrival time of r^. Once Test is calculated for all the tasks, 
a possible search strategy is to select the task with the smallest value of Test-
Composed heuristic functions can also be used to integrate relevant information 
on the tasks, such as 

H = d-hW'C 

H = d-^W'Test. 

where VF is a weight that can be adjusted for different application environments. 
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Precedence constraints can be handled by introducing a new factor E, called 
eligibility. A task becomes eligible to execute only when all its ancestors in the 
precedence graph are completed. If a task is not eligible, it cannot be selected 
for extending a partial schedule. 

While extending a partial schedule, the algorithm determines whether the cur­
rent schedule is strongly feasible; that is, it is also feasible by extending it with 
any of the remaining tasks. If a partial schedule is found not to be strongly 
feasible, the algorithm stops the search process and announces that the task 
set is not schedulable; otherwise, the search continues until a complete feasible 
schedule is met. Since a feasible schedule is reached through n nodes and each 
partial schedule requires the evaluation of at most n heuristic functions, the 
complexity of the Spring algorithm is 0{n'^). 

Backtracking can be used to continue the search after a failure. In this case, the 
algorithm returns to the previous partial schedule and extends it by the task 
with the second-smallest heuristic value. To restrict the overhead of backtrack­
ing, however, the maximum number of possible backtracks must be limited. 
Another method to reduce the complexity is to restrict the number of evalu­
ations of the heuristic function. Do to that, if a partial schedule is found to 
be strongly feasible, the heuristic function is applied not to all the remaining 
tasks but only to the k remaining tasks with the earliest deadlines. Given that 
only k tasks are considered at each step, the complexity becomes 0{kn). If 
the value of k is constant (and small, compared to the task set size), then the 
complexity becomes linearly proportional to the number of tasks. 

11.3.3 I /O and interrupt handling 

In Spring, peripheral I/O devices are divided in two classes: slow and fast I/O 
devices. Slow I/O devices are multiplexed through a front-end dedicated pro­
cessor (I/O processor), controlled by a commercial operating system. Device 
drivers running on this processor are not subject to the dynamic guarantee al­
gorithm, although they can activate critical or essential tasks. Fast I/O devices 
are handled by the system processor, so they do not affect the execution of ap­
plication tasks. Interrupts from fast I/O devices are treated as instantiating a 
new task that is subject to the guarantee routine just like any other task in the 
system. 
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11.4 RK 

RK (Real-time Kernel) is a distributed real-time system developed at the Uni­
versity of Pennsylvania [LKP88, LK88] to support multisensor robotic appli­
cations. The presence of hard timing constraints in robotic control activities 
is necessary for two important reasons. First, sensors and actuators require 
regular acquisition and feedback control in order to achieve continuous and 
smooth operations. Second, some high-level tasks (such as trajectory planning, 
obstacle avoidance, and so on) may require timely execution to avoid possible 
catastrophic results. 

The target architecture for which RK has been designed is illustrated in Fig­
ure 11.4. It consists of five processors (MicroVAX) connected through a 10 Mb 
Ethernet, two robot manipulators (PUMA 560) with a joint controller each, a 
tactile sensor, and a camera. One of the processors (P3) works as a supervisor, 
two (PI and P5) are connected to the joint controllers via a parallel interface, 
one (P2) is responsible for image acquisition and processing, and one (P4) is 
dedicated to the tactile sensor. In order to support all sensory and control ac­
tivities needed for this robot system, an identical copy of the kernel is executed 
on each of the five processors. 

To achieve predictable behavior, RK provides a set of services whose worst-case 
execution time is bounded. In addition, the kernel allows the programmer to 
specify timing constraints for process execution and interprocess communica­
tion. 
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11.4.1 Scheduling 

RK supports both real-time and non-real-time tasks. Real-time tasks are di­
vided in three classes with different level of criticalness: imperative, hard, and 
soft. The assignment of the CPU to tasks is done according to a priority order. 
Within the same class, imperative processes are executed on a First-Come-
First-Served (FCFS) basis, whereas hard and soft processes are executed based 
on their timing constraints by the EDF algorithm. The difference between hard 
and soft tasks is that hard tasks are subject to a guarantee algorithm that veri­
fies their schedulability at creation time, whereas soft tasks are not guaranteed. 
Finally, non-real-time tasks are scheduled in background using FCFS. Timing 
constraints on real-time tasks can also be specified as periodic or sporadic and 
can be defined on the whole process, on a part of a process, and on messages. 

To facilitate the programming of timing constraints, RK supports a notion of 
temporal scope^ which identifies explicit timing constraints with a sequence of 
statements. Each temporal scope consists of five attributes: a hard/soft flag, 
a start time, a maximum execution time, a deadline, and a unique identifier. 
Whenever a temporal scope with a hard flag is entered, the scheduler checks 
whether the corresponding timing constraints can be guaranteed in the context 
of the current load. If the request cannot be guaranteed, an error message is 
generated by the kernel. 

A timing constraint is violated if either a process executes longer than the max­
imum declared execution time or its deadline is exceeded. When this happens, 
the kernel sends a signal to the process. If the process is hard, a critical system 
error has occurred (since the timing constraint was guaranteed by the sched­
uler); thus, the task that missed the deadline becomes an imperative process, 
and a controlled shutdown of the system is performed as soon as possible. 

11.4.2 Communication 

RK provides three basic communication methods among real-time tasks: 

• Signals, for notification of critical system errors; 

• Timed events, for notification of events with timing constraints; 

• Ports, for asynchronous message passing with timing constraints. 
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Signals 

Signals are used by the kernel to notify that an error has occurred. The purpose 
of sending such a signal is to give the process a chance to clean up its state 
or to perform a controlled shutdown of the system. There are three types of 
errors: timing errors, process errors, and system errors. Timing errors occur 
when either a process executes longer than its maximum execution time or 
its deadline is exceeded. Process errors occur when a task executes an illegal 
operation - for example, an access to an invalid memory address. System 
errors are due to the kernel; for example, running out of buffers that have been 
guaranteed to a task. When the kernel sends a signal to a process, the process 
executes an appropriate signal handler and then resumes the previous execution 
flow when the handler is finished. 

Timed events 

Events are the most basic mechanism for interprocess communication. Unlike 
a signal, an event can be sent, waited on, delayed, and preempted. In addition, 
each event can have timing constraints and an integer value, which can be used 
to pass a small amount of data. For each event, the kernel remembers only the 
last occurrence of the event. Thus, if an event arrives while another one of the 
same type is pending, only the value of the last one is remembered. 

Like signals, whenever a process receives an event, it executes an associated 
event handler; the previous execution flow resumes once the handler is finished. 
There are two ways to associate timing constraints with events. According to 
the first way, the receiver of an event may specify a timeout for executing the 
event handler. Alternatively, the sender may include a deadline when the event 
is sent. If both the sender and the receiver specify timing constraints for the 
same event, then the earliest deadline is used for the execution of the handler. 

If a non-real-time process receives a timed event, the corresponding event han­
dler is executed immediately, and, during the handling of the event, the process 
is treated as real-time. This feature allows non-real-time server processes to 
handle requests from real-time processes. 

Ports 

The port construct is widely used in operating systems for interprocess com­
munication. In RK, it is extended for real-time communication by allowing 
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the sender to specify timing constraints in messages and the receiver to con­
trol message queueing and reception strategies. Sending a message to a port 
is always nonblocking, and the execution time for a transmission is bounded 
to ensure a predictable delay. For critical message communication, the sender 
can include a set of timing attributes within each message, such as the start 
time, the maximum duration and the deadline. Receiving a message can be 
either explicit or asynchronous. When using an explicit receive primitive, the 
process can specify a timeout to limit the delay in waiting for a message. For 
asynchronous receive, the receiver associates a timed event with a port and 
each message arrival is notified through the timed event. 

Every RK process is created with a default reception port, used during initial­
ization and to request services from system server processes. Additional ports 
can be created using the following system call: 

port-id = port_create(type). 

The argument type specifies whether the port is for receiving messages or for 
multicasting messages. For a reception port, any process can send a message 
to it, but only the creator can receive from it. A multicast port realizes a one-
to-many communication channel. Each multicast port has a list of destination 
ports to which messages are to be forwarded. When a message is sent to a 
multicast port, it is forwarded to all ports connected to it, and this forwarding 
is repeated until the message reaches a reception port. 

When creating a reception port, various attributes can be specified by the 
creator. They allow the following characteristics to be defined: 

• The ordering of messages within the port queue. It can be done 
either by transmission time, arrival time, or deadline. 

• The size of the queue - that is, the maximum number of messages that 
can be stored in the queue. In case of overflow, it is possible to specify 
whether messages are thrown away at the head or at the tail of the queue. 

• Communication semantics. Normally, messages are removed from the 
queue when they are received. However, when the stick attribute is set, a 
message remains in the queue even after it is received, and it is replaced 
only when a new message arrives. 

In RK, the send and receive system calls have the following syntax: 
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send(portid, reply .port id, t_record, msg, size); 

receive(portid, reply_portid, timeuot, t_record, msg, size); 

where portid is the identifier of the port; replyjportid specifies where to send a 
reply; timeout (only in reception) specifies the maximum amount of time that 
the primitive should block waiting for a message; tjrecord is a pointer to a 
record containing the three timing attributes (start time, maximum duration, 
and deadline) specified by the sender; msg is a pointer to the message; and 
size is the size of the message. 

11.4,3 I / O and interrupt handling 

Traditional operating systems provide device drivers that simplify the inter­
actions between application processes and peripheral devices. This approach 
allows the same device to be used by many processes; however, it introduces ad­
ditional delays during processes's execution that may jeopardize the guarantee 
of hard real-time activities. 

In robotics applications, this problem is not so relevant, since sensory devices 
are not shared among processes but are controlled by dedicated tasks that 
collect data and preprocess them. For this reason, RK allows processes to 
directly control devices by sharing memory and accessing device registers. In 
addition, a process may request the kernel to convert device interrupts into 
timed events. 

Although this approach requires the programmer to know low-level details 
about devices, it is faster than the traditional method, since no context switch­
ing is needed to apply feedback to a device. Furthermore, the kernel needs not 
to be changed when removing or adding new devices. 

11.5 ARTS 

ARTS (Advanced Real-time Technology System) is a distributed real-time op­
erating system developed at the Carnegie Mellon University [TK88, TM89] for 
verifying advanced computing technologies for a distributed environment. The 
target architecture for which ARTS has been developed consists of a set of 
SUN workstations connected by a real-time network based on IEEE 802.5 To-
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F i g u r e 11.5 The ARTS target architecture. 

ken Ring. Figure 11.5 shows the typical configuration of the system and the 
relation between the kernel and its real-time tools. 

The programming environment provided by the ARTS system is based on an 
object-oriented paradigm, in which every computational entity is represented 
by an object. Objects can be defined as real-time or non-real-time objects. 
Each operation associated with a real-time object has a worst-case execution 
time, called a time fence, and a time exception handling routine. In addition, 
an ARTS object can be passive or active. Active objects are characterized by 
the presence of one or more internal threads (defined by the user) that accept 
incoming invocation requests. 

All threads are implemented as lightweight processes that share the same ad­
dress space. A thread can be defined as a periodic or aperiodic task depending 
on its timing attributes. The timing attributes of a thread consist of a value 
function, a worst-case execution time, a period, a phase, and a delay value. 

ARTS supports the creation and destruction of objects at a local node, as 
well as at a remote node. Although process migration is a very important 
mechanism in non-real-time distributed operating systems, the ARTS kernel 
does not support object migration during runtime. Instead, it can move an 
object by shutting down the activities and reinitiating the object at the target 
host with appropriate parameters. 
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11.5.1 Scheduling 

In ARTS, the scheduling pohcy is implemented as a self-contained kernel object 
and is separated from the thread handling mechanism, which performs only 
dispatching and blocking. 

For experimental purposes, several scheduling policies have been implemented 
in the ARTS kernel, including static algorithms such as Rate Monotonic (RM) 
and dynamic algorithms such as Earliest Deadline First (EDF) and Least Lax­
ity First (LLF). In conjunction with Rate Monotonic, a number of strategies 
for handling aperiodic threads have been realized, such as Background servic­
ing (BKG), Polling (POL), Deferrable Server (DS), and Sporadic Server (SS). 
More common scheduling algorithms such as First Come First Served (FCFS) 
and Round Robin (RR) have also been realized for comparison with real-time 
scheduling policies. A scheduling policy object can be selected either during 
system initialization or during runtime. Figure 11.6 shows the general structure 
of the ARTS scheduler. 

A schedulability analyzer associated with each scheduling algorithm allows the 
following to be guaranteed: 

• The feasibility of hard tasks within their deadlines, 

• A high cumulative value for soft tasks, and 

• Overload control based on the value functions of aperiodic tasks. 

When selecting a server mechanism for handling aperiodic tasks, the server pa­
rameters (period and capacity) are set to fully utilize the processor. This allows 
to reserve the maximum CPU time for aperiodic service while guaranteeing the 
schedulability of periodic hard tasks. 
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11.5.2 Coramunication 

In traditional real-time operating systems, interprocess communication mech­
anisms are realized to be fast and efficient (that is, characterized by a low 
overhead). In ARTS, however, the main goal has been to realize a commu­
nication mechanism characterized by a predictable and analyzable behavior. 
To achieve this goal, ARTS system calls require detailed information about 
communication patterns among objects, including the specification of periodic 
message traffic and rates for aperiodic traffic. 

In ARTS, every message communication is caused by an invocation of a target 
object's operation, and the actual message communication is performed in a 
Request-Accept-Reply fashion. Unlike traditional message passing paradigms, 
the caller must specify the destination object, the identifier of the requested 
operation, the pointer to the message, and the pointer to a buflFer area for the 
reply message. 

To avoid priority inversion among objects inside each node, message trans­
mission is integrated with a Priority Inheritance mechanism, which allows to 
propagate priority information across object invocations. All network messages 
are handled by a Communication Manager (CM), where different protocols are 
implemented using a state table specification. The CM prevents priority inver­
sion over the network by using priority queues with priority inheritance. Thus, 
if a low-priority message is processed when a higher-priority message arrives, 
the low-priority message will execute at the highest priority. In this way, the 
highest-priority message remains in the queue for at most the time it takes to 
process one message. 

11.5.3 Supporting tools 

ARTS provides a set of supporting tools, the ARTS Tool-Set [TK88], aimed at 
reducing the complexity of application development in a distributed real-time 
environment. This tool-set includes a schedulability analyzer, a support for 
debugging, and a system monitoring tool. 

Schedulability analyzer 

The main objective of this tool is to verify the schedulability of a given set of 
hard real-time tasks under a particular scheduling algorithm. The performance 
of soft aperiodic tasks are computed under specific service mechanisms, such as 
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Background, Polling, Deferrable Server, and Sporadic Server. An interactive 
graphical user interface is provided on a window system to quickly select the 
scheduling algorithm and the task set to be analyzed. To confirm the schedu-
lability of the given task set in a practical environment, this tool also includes 
a synthetic workload generator, which creates a particular sequence of requests 
based on a workload table specified by the user. The synthetic task set can 
then be executed by a scheduling simulator to test the observance of the hard 
timing constraints. 

Debug ging 

The ARTS system provides the programmer with a set of basic primitives that 
can be used for building a debugger and for monitoring process variables. For 
example, the Thread-Freeze primitive halts a specific thread for inspection, 
while the Object-Freeze primitive stops the execution of an ARTS object (that 
is, all its associated threads). Thread-Unfreeze and Object-Unfreeze primitives 
resume a suspended thread and object, respectively. While a thread is in a 
frozen state, the Fetch primitive allows to inspect its status in terms of a set 
of values of data objects. The value of any data object can be replaced using 
the Store primitive. Finally, the Thread-Capture and Object-Capture primitives 
allow to capture on-going communication messages from a specified thread and 
object, respectively. 

System monitoring 

ARTS includes a monitoring tool, called Advance Real-time Monitor (ARM), 
whose objective is to observe and visualize the system's runtime behavior. Typ­
ical events that can be visualized by this tool are context switches among tasks 
caused by scheduling decisions. ARM is divided into three functional units: 
the Event Tap, the Reporter, and the Visualizer. The Event Tap is a probe 
embedded inside the kernel to pick up the row data on interesting events. The 
Reporter is in charge of sending the row data to the Visualizer on a remote 
host, which analyzes the events and visualizes them in an interactive graph­
ical environment. The Visualizer is designed to be easily ported to different 
graphical interfaces. 
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11.6 HARTIK 

HARTIK (HArd Real-Time Kernel) is a hard real-time operating environment 
developed at the Scuola Superiore S. Anna of Pisa [BDN93, But93] to sup­
port advanced robot control applications characterized by stringent timing con­
straints. 

Complex robot systems are usually equipped with different types of sensors 
and actuators and hence require the concurrent execution of computational 
activities characterized by different types of timing constraints. For example, 
processing activities related to sensory acquisition and low-level servoing must 
be periodically executed with regular activation rates to ensure a correct recon­
struction of external signals and guarantee a smooth and stable behavior of the 
robot system. Other activities (such as planning special actions, modifying the 
control parameters, or handling exceptional situations) are intrinsically aperi­
odic and are triggered when some particular condition occurs. To achieve a 
predictable timing behavior and to satisfy system stability requirements, most 
acquisition and control tasks require stringent timing constraints, that have 
to be met in all anticipated workload conditions. In addition, complex robot 
systems are typically built using disparate peripheral devices that may be dis­
tributed on heterogeneous computers. 

For the reasons mentioned above, HARTIK has been designed to support the 
following major characteristics: 

Flexibility. It is possible to schedule hybrid task sets consisting of peri­
odic and aperiodic tasks with different level of criticalness. 

Portability. The kernel has been designed in a modular fashion, and all 
hardware-dependent code is encapsulated in a small layer that provides a 
virtual machine environment. 

Dynamic preemptive scheduling and on-line guarantee. Any hard 
task is subject to a feasibility test. If a task cannot be guaranteed, the 
system raises an exception that allows to take an alternative action. 

Efficient aperiodic service. An integrated scheduling algorithm en­
hances responsiveness of soft aperiodic requests without jeopardizing the 
guarantee of the hard tasks. 

Predictable resource sharing. Special semaphores allow to bound 
the maximum blocking time on critical sections, preventing deadlock and 
chained blocking. 
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Fully asynchronous communication. A particular nonblocking mech­
anism, called CAB, is provided for exchanging messages among periodic 
tasks with different periods, thus allowing the implementation of multilevel 
feedback control loops. 

Efficient and predictable interrupt handling mechanism. Any in­
terrupt request can either be served immediately, or cause the activation 
of an handler task, which is guaranteed and scheduled as any other hard 
task in the system. 

To facilitate the development of real-time control applications on heterogeneous 
architectures, HARTIK has been designed to be easily ported on different hard­
ware platforms. At present, the kernel is available for Motorola MC 680x0 
boards with VME bus, Intel 80x86 and Pentium with ISA/PCI bus, and DEC 
AXP-Alpha stations with PCI bus. 

Figure 11.7 illustrates a possible architecture that can be used to build a con­
trol application. In this solution, control algorithms, trajectory planning, and 
feedback loops are executed on a Pentium-based computer; sensory acquisition 
and data preprocessing are executed on a Motorola 68030 processor; whereas 
the application development is carried out on a DEC Alpha workstation. In 
this node, a set of tools is available for designing the application structure, esti­
mating the maximum execution time of the tasks, analyzing the schedulability 
of the task set, and monitoring the system activity. 

11.6.1 Task management and scheduling 

HARTIK distinguishes three classes of tasks with different criticalness: 

H A R D tasks. They are periodic or aperiodic processes with critical 
deadline that are guaranteed by the kernel at creation time. Moreover, 
the system performs a runtime check on hard deadlines, notifying a time 
overflow when a hard deadhne is missed. 

SOFT tasks. They are periodic or aperiodic processes with non-critical 
deadline that are not guaranteed by the system. Soft tasks are handled by 
the Total Bandwidth Server[SB94, SB96], which enhances their response 
time without jeopardizing the guarantee of hard tasks. 
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NRT tasks. They are Non-Real-Time aperiodic processes with no timing 
constraints. NRT tasks are scheduled in background and are characterized 
by a static priority level assigned by the user. 

When a task is created, several parameters have to be specified, such as its 
name, its class (HARD, SOFT, or NRT), its type (periodic or aperiodic), a 
relative deadline, a period (or a minimum interarrival time for sporadic tasks), 
a worst-case execution time, a pointer to a list of resources handled by the 
Stack Resource Policy, and a maximum blocking time. Hard and soft tasks are 
scheduled according to the Earliest-Deadline-First scheduling policy, which is 
optimal and achieves full processor utilization. 

Real-time tasks can share resources in a predictable fashion through the Stack 
Resource Policy (SRP). The SRP ensures that, once started, a task will never 
block until completion but can be preempted only by higher-priority tasks. 
Furthermore, the SRP avoids priority inversion, chained blocking, deadlock, 
and reduces the number of context switches due to resource acquisition. Using 
SRP, the maximum blocking time that any task can experience is equal to the 
duration of the longest critical section, among those that can block it. 



348 C H A P T E R 11 

11.6.2 Process communication 

HARTIK provides both synchronous and asynchronous communication primi­
tives to adapt to different task requirements. For synchronous communication, 
tasks can use two types of ports: RECEIVE and BROADCAST. 

A RECEIVE port is a channel where many tasks can send messages to, but only 
one, the owner, is allowed to receive them. Sending messages to and receiving 
messages from a receive port is always synchronous with timeout. Hence, these 
ports can be used by soft and NRT tasks and by those hard tasks that must 
absolutely perform synchronous communication. 

BROADCAST ports provide a one-to-many communication channel. They 
have not only some buffering capability for incoming messages but also a list 
of destination ports to which messages are to be forwarded. When a message 
is sent to a broadcast port, it is redirected to all ports specified in the list. 
BROADCAST ports allow asynchronous send, but they are not directly ad­
dressable by a receive. These ports are suited for soft and non-real-time tasks. 

A third type of port available in the kernel is the STICK port, which is a 
one-to-many communication channel with asynchronous semantics. When a 
process receives a message from a STICK port, the port does not consume the 
message but leaves it stuck until it is overwritten by another incoming message. 
As a consequence, a process is never blocked for an empty or full buffer. For 
this property, the use of STICK ports is strongly recommended for exchanging 
state information among HARD tasks. 

Asynchronous communication is supported by the Cyclic Asynchronous Buffer 
(CAB) mechanism, purposely designed for the cooperation among periodic ac­
tivities with different activation rate, such as sensory acquisition and control 
loops. A CAB provides a one-to-many communication channel which contains, 
at any instant, the latest message inserted in its structure. 

A message is not consumed by a receiving task, but it is maintained into the 
CAB until a new message is overwritten. In this way, a receiving task will 
always find data in a CAB, so that unpredictable delays due to synchroniza­
tion can be eliminated. It is important to point out that CABs do not use 
semaphores to protect their internal data structures, so they are not subject to 
priority inversion. 
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CAB messages are always accessed through a pointer, so that the overhead of 
CAB primitives is small and independent of the message size. The kernel also 
allows tasks to perform simultaneous read and write operations to a CAB. This 
is achieved through the use of multiple memory buffers. For example, if a task 
wants to write a new message in a CAB that is being used by another task 
(which is reading the current message), a new buffer is assigned to the writer, 
so that no memory conflict occurs. As the writing operation is completed, the 
written message becomes the most recent information in that CAB, and it will 
be available to any other task. The maximum number of buffers needed for a 
CAB to avoid blocking must be equal to the number of tasks that share the 
CAB plus one. 

11.6.3 Interrupt handling 

In HARTIK, a device driver is split into two parts: a fast handler and a safe 
handler. When an interrupt is triggered by an I/O device, the fast handler is 
executed in the context of the currently running task to avoid the overhead due 
to a context switch. It typically performs some basic input/output operations 
and acknowledges the peripheral. Then, the kernel automatically activates the 
safe handler, which is subject to the scheduling algorithm as any other aperiodic 
task in the system. The safe handler can be declared as a soft or sporadic task 
depending on the characteristics of the device. It is in charge of doing any 
remaining computation on the device - for example, data multiplexing among 
user tasks. This approach is quite flexible, since it allows to nicely combine two 
different service techniques: the event-driven approach (obtained by the fast 
handler) and the time-driven approach (obtained by the safe handler). 

11.6.4 Programming tools 

The HARTIK system includes a set of tools [ABDNB96, ABDNS96] to assist 
the development of time-critical applications from the design stage to the mon­
itoring phase. In particular, the tool set includes a design tool to describe the 
structure of the application, a schedulability analyzer to verify the feasibility 
of critical tasks, a scheduling simulator to test the performance of the system 
under a synthetic workload, a worst-case execution time estimator, and a tracer 
to monitor and visualize the actual evolution of the application. 
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Design tool 

The design tool includes an interactive graphics environment that allows the 
user to describe the application requirements according to three hierarchical 
levels. At the highest level, the application is described as a number of vir­
tual nodes that communicate through channels. Virtual nodes and channels 
are graphically represented by icons linked with arrows. Opening the icon of a 
virtual node we reach the second hierarchical level. At this stage, the developer 
specifies the set of concurrent tasks running in the virtual node and commu­
nicating through shared critical sections or through channels. Tasks, shared 
resources, and channels are graphically represented by icons that the developer 
can move and link with arrows. Any possible object (a task, a resource, a 
channel, or a message) is an instance of a class for that type of object. 

Scheduling analyzer 

The Schedulability Analyzer Tool (SAT) is very useful for designing predictable 
real-time applications because it enables the developer to analyze a set of critical 
tasks and statically verify their schedulability. If the schedulability analysis 
gives a negative result, the user can change the task parameters and rerun the 
guarantee test. For instance, some adjustments are possible by rearranging 
the task deadlines or by producing a more compact and efficient code for some 
critical tasks or even changing the target machine. 

Scheduling simulator 

Many practical real-time applications do not contain critical activities but only 
tasks with soft time constraints, where a deadline miss does not cause any 
serious damage. In these applications, the user may be interested in evaluating 
the performance of the system in the average-case behavior rather than in the 
worst-case behavior. In order to do that, a statistical analysis through a graphic 
simulation is required. For this purpose, the tool kit includes a scheduling 
simulator and a load generator for creating random aperiodic activities. Actual 
computation times, arrival times, durations, and positions of critical sections 
in the tasks are computed by the load generator as random variables, whose 
distribution is provided by the user. 
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Maximum execution time evaluator 

The execution time of tasks it is estimated by a proper tool, which performs a 
static analysis of the application code, supported by a programming style and 
specific language constructs to get analyzable programs. The language used to 
develop time-bounded code is an extension of the C language, where monitors 
are added to isolate and evaluate the duration of critical sections. Optional 
bounds are programmable to limit the number of iterations in loop statements 
or to limit the maximum number of processing conditional branches inside 
loops. The present implementation has models of Intel 1386 and i486 CPUs, 
but the tool can be easily adapted to different kind of processors. 

The model includes the simulation of the processor in a table-driven fashion, 
where assembly instructions are translated into execution times depending on 
their operating code, operands, and addressing mode. The tool works in con­
junction with the C compiler and produces a graph representation of the pro­
gram's control structure in terms of temporal behavior, where a weight is as­
signed to every branch of the graph, corresponding to the number of CPU cycles 
needed for the execution of a segment of sequential code. With this representa­
tion, calculating the worst-case behavior of an algorithm means evaluating the 
maximum cost path in the graph. 

Real-time tracer 

This tool allows the monitoring of the system evolution while an application is 
running. It consists of four main parts: a probe, a data structure in the kernel, 
an event recorder, and a visualizer. The probe is a kernel routine inserted in 
the system calls, capable of keeping track of all events occurring in the system. 
At each context switch, the probe saves in main memory the system time (with 
a microsecond a resolution) at which the event takes place, the name of the 
recorded primitive, the process identifier, its current deadline, and its state 
before the primitive execution. At system termination, the recorder saves the 
application trace in a file, which can be later interpreted and displayed by the 
visualizer. This tool produces a graphics representation of the system evolution 
in a desired time scale, under Windows NT/95. 

The user has the possibility of moving along the trace, changing the scale 
factor (zoom), and displaying information about task properties, such as type, 
periodicity class, deadhne, and period. Statistical information on waiting times 
into the various queues are also calculated and displayed both in graphical and 
textual fashion. On-line help is also provided. 




