
7
RESOURCE ACCESS PROTOCOLS

7.1 INTRODUCTION

A resource is any software structure that can be used by a process to advance
its execution. Typically, a resource can be a data structure, a set of variables, a
main memory area, a file, or a set of registers of a peripheral device. A resource
dedicated to a particular process is said to be private, whereas a resource that
can be used by more tasks is called a shared resource. A shared resource
protected against concurrent accesses is called an exclusive resource.

To ensure consistency of the data structures in exclusive resources, any con
current operating system should use appropriate resource access protocols to
guarantee a mutual exclusion among competing tasks. A piece of code executed
under mutual exclusion constraints is called a critical section.

Any task that needs to enter a critical section must wait until no other task
is holding the resource. A task waiting for an exclusive resource is said to be
blocked on that resource, otherwise it proceeds by entering the critical section
and holds the resource. When a task leaves a critical section, the resource
associated with the critical section becomes free, and it can be allocated to
another waiting task, if any.

Operating systems typically provide a general synchronization tool, called a
semaphore [Dij68, BH73, PS85], that can be used by tasks to build critical
sections. A semaphore is a kernel data structure that, apart from initialization,
can be accessed only through two kernel primitives, usually called wait and
signal When using this tool, each exclusive resource Ri must be protected by

182 C H A P T E R 7

activation /^
K READY

signal V

Figure 7.1

dispatching

preemption

^ ^ { WAIT V

Waiting state caused by

T RUN J-

^^^ wait

termination

resource constraints.

a different semaphore Si and each critical section operating on a resource Ri
must begin with a wait{Si) primitive and end with a signal{Si) primitive.

All tasks blocked on the same resource are kept in a queue associated with the
semaphore that protects the resource. When a running task executes a wait
primitive on a locked semaphore, it enters a waiting state, until another task
executes a signal primitive that unlocks the semaphore. When a task leaves
the waiting state, it does not go in the running state, but in the ready state,
so that the CPU can be assigned to the highest-priority task by the scheduling
algorithm. The state transition diagram relative to the situation described
above is shown in Figure 7.1.

In this chapter, we describe the main problems that may arise in a uniprocessor
system when concurrent tasks use shared resources in exclusive mode, and we
present some resource access protocols designed to avoid such problems and
bound the maximum blocking time of each task. We then show how such
blocking times can be used in the schedulability analysis to extend the guarantee
formulae found for periodic task sets.

7.2 THE PRIORITY INVERSION
PHENOMENON

Consider two tasks Ji and J2 that share an exclusive resource Rk (such as
a list), on which two operations (such as insert and remove) are defined. To
guarantee the mutual exclusion, both operations must be defined as critical
sections. If a binary semaphore Sk is used for this purpose, then each critical
section must begin with a wait(Sk) primitive and must end with a signal(Sk)
primitive (see Figure 7.2).

Resource Access Protocols 183

wait(Sk)

use
resource

R k

signal(Sk)

<f

resource

R k

A
wait(S k) '

use "
resource i

•^k ;

signal(Sk) \

Figure 7.2 Structure of two teisks that share an exclusive resource.

normal execution

1 critical section
J1 blocked

Figure 7.3 Example of blocking on an exclusive resource.

If preemption is allowed and Ji has a higher priority than J2, then Ji can
be blocked in the situation depicted in Figure 7.3. Here, task J2 is activated
first, and, after a while, it enters the critical section and locks the semaphore.
While J2 is executing the critical section, task Ji arrives and, since it ha^ a
higher priority, it preempts J2 and starts executing. However, at time ^1, when
attempting to enter its critical section, J\ is blocked on the semaphore, so J2
resumes. Ji has to wait until time ^2, when J2 releases the critical section by
executing the signal(Sk) primitive, which unlocks the semaphore.

184 C H A P T E R 7

normal execution

critical section

J 1 blocked

to ti t2 t3 t4

Figure 7.4 An example of priority inversion.

In this simple example, the maximum blocking time that Ji may experience is
equal to the time needed by J2 to execute its critical section. Such a blocking
cannot be avoided because it is a direct consequence of the mutual exclusion
necessary to protect the shared resource against concurrent accesses of com
peting tasks.

Unfortunately, in the general case, the blocking time of a task on a busy resource
cannot be bounded by the duration of the critical section executed by the lower-
priority task. In fact, consider the example illustrated in Figure 7.4. Here, three
tasks J i , J2, and J3 have decreasing priorities, and Ji and J3 share an exclusive
resource protected by a binary semaphore 5.

If J3 starts at time ^o, it may happen that Ji arrives at time 2̂ ctnd preempts
J3 inside its critical section. At time ^3, Ji attempts to use the resource, but
it is blocked on the semaphore 5; thus, J3 continues the execution inside its
critical section. Now, if J2 arrives at time ^4, it preempts J3 (because it has
a higher priority) and increases the blocking time of Ji by all its duration.
As a consequence, the maximum blocking time that Ji may experience does
depend not only on the length of the critical section executed by J3 but also
on the worst-case execution time of J2! This is a situation that, if it recurs
with other medium-priority tasks, can lead to uncontrolled blocking and can
cause critical deadlines to be missed. A priority inversion is said to occur in
the interval [^3,^6], since the highest-priority task Ji waits for the execution of
lower-priority tasks (J2 and J3). In general, the duration of priority inversion

Resource Access Protocols 185

normal execution

critical section

Jj blocked

P l i i i i i

Figure 7.5 Scheduling with non-preemptive critical sections.

is unbounded, since any intermediate-priority task that can preempt J3 will
indirectly block J i .

Several approaches have been proposed to deal with the problem of scheduling
tasks accessing shared resources. A simple solution that avoids the unbounded
priority inversion problem is to disallow preemption during the execution of all
critical sections. This method, however, is only appropriate for very short crit
ical sections, because it creates unnecessary blocking. Consider, for example,
the case depicted in Figure 7.5, where Ji is the highest-priority task that does
not use any resource, whereas J2 and J3 are low-priority tasks that share an
exclusive resource. If the low-priority task J3 enters a long critical section, Ji
may unnecessarily be blocked for a long period of time.

In other approaches, the priority inversion problem is solved through the use
of appropriate protocols that control the accesses to any shared resource. The
Priority Inheritance Protocol and the Priority Ceiling Protocol [SRL90] apply
to fixed-priority systems,^ whereas the Stack Resource PoUcy [Bak91] is suitable
both for static and dynamic priority systems. These protocols are described in
the following sections.

^The Priority Inheritance Protocol has been extended for EDF by Spuri [Spu95], and the
Priority Ceiling Protocol has been extended for EDF by Chen and Lin [CL90].

186 C H A P T E R 7

7.3 PRIORITY INHERITANCE
PROTOCOL

The Priority Inheritance Protocol (PIP), proposed by Sha, Rajkumar and
Lehoczky [SRL90], offers a simple solution to the problem of unbounded priority
inversion caused by resource constraints. The basic idea behind this protocol is
to modify the priority of those tasks that cause blocking. In particular, when a
task Ji blocks one or more higher-priority tasks, it temporarily assumes {inher
its) the highest priority of the blocked tasks. This prevents medium-priority
tasks from preempting Ji and prolonging the blocking duration experienced
by the higher-priority tasks. Before describing the protocol in detail, we first
introduce the terminology and the basic assumptions made on the system.

7.3.1 Terminology and assumptions

Consider a set of n periodic tasks, r i , r 2 , . . . ,rn, which cooperate through m
shared resources, i?i,i?27 • • • .Rm- Each task is characterized by a period Ti
and a worst-case computation time Cj. The deadline of any periodic instance
is assumed to be at the end of its period. Each resource Rk is guarded by
a distinct semaphore Sk- Hence, all critical sections on resource Rk begin
with a wait{Sk) operation and end with a signal (Sk) operation. The following
notation is adopted throughout the discussion:

Ji denotes a job; that is, a generic instance of task r^.

Since the protocol can modify the priority of the tasks, for each task we
distinguish a fixed nominal priority Pi (assigned, for example, by the Rate
Monotonic algorithm) and an active priority pi {pi > Pi), which is dynamic
and initially set to Pi.

Zij denotes the jth critical section of job Ji.

dij denotes the duration of Zij\ that is, the time needed by Ji to execute
Zij without interruption.

The semaphore guarding the critical section Zij is denoted by Sij and the
resource associated with Zij is denoted by Rij.

We write Zij C Zi^k to indicate that Zij is entirely contained in Zi^k-

Resource Access Protocols 187

Moreover, the properties of the protocol are vahd under the following assump
tions:

Jobs Ji^J^.'.Jn are listed in descending order of nominal priority, with
Ji having the highest nominal priority.

Jobs do not suspend themselves (for example, on I/O operations or on
explicit synchronization primitives).

The critical sections used by any task are properly nested; that is, given
any pair Zij and Zi,^, then either Zij C Zi^k, zi^k C ^ i j , or zi^j D zi^k = 0-

Critical sections are guarded by binary semaphores. This means that only
one job at a time can be within the critical section corresponding to a
particular semaphore Su-

7.3.2 Protocol definition

The Priority Inheritance Protocol can be defined as follows:

• Jobs are scheduled based on their active priorities. Jobs with the same
priority are executed in a First Come First Served discipline.

• When job Ji tries to enter a critical section zi^j and resource Ri^j is already
held by a lower-priority job, Ji will be blocked. Ji is said to be blocked by
the task that holds the resource. Otherwise, Ji enters the critical section
Zi^j.

• When a job Ji is blocked on a semaphore, it transmits its active priority
to the job, say J^, that holds that semaphore. Hence, Jk resumes and
executes the rest of its critical section with a priority pk = Pi- Jk is said
to inherit the priority of Ji. In general, a task inherits the highest priority
of the jobs blocked by it.

• When Jk exits a critical section, it unlocks the semaphore, and the highest-
priority job, if any, blocked on that semaphore is awakened. Moreover, the
active priority of Jk is updated as follows: if no other jobs are blocked by
Jfc, Pk is set to its nominal priority Pk, otherwise it is set to the highest
priority of the jobs blocked by J^.

• Priority inheritance is transitive; that is, if a job J3 blocks a job J2, and
J2 blocks a job J i , then J3 inherits the priority of Ji via J2.

188 C H A P T E R 7

normal execution

critical section

direct blocking

push-through blocking

p. JP3

Figure 7.6 Example of Priority Inheritance Protocol.

Examples

We first consider the same situation presented in Figure 7.4 and show how
the priority inversion phenomenon can be bounded by the Priority Inheritance
Protocol. The modified schedule is illustrated in Figure 7.6. Until time 3̂
there is no variation in the schedule, since no priority inheritance takes place.
At time ^3, Ji is blocked by J3, thus J3 inherits the priority of Ji and executes
the remaining part of its critical section (from 3̂ to ^5) at the highest priority.
In this condition, at time ^4, J2 cannot preempt J3 and cannot create additional
interference on J i . As J3 exits its critical section, Ji is awakened and J3 resumes
its original priority. At time ^5, the processor is assigned to J i , which is the
highest-priority task ready to execute, and task J2 can only start at time te,
when Ji has completed. The active priority of J3 as a function of time is also
shown in Figure 7.6 on the lowest timeline.

From this example, we can notice that a high-priority job can experience two
kinds of blocking:

Direct blocking. It occurs when a higher-priority job tries to acquire a
resource already held by a lower-priority job. Direct blocking is necessary
to ensure the consistency of the shared resources.

Resource Access Protocols 189

normal execution

critical section

piiMlil -

3 •
P, '

P 2 -
PT

^P3

a 1 b b b a

t l t2 t3 t4 t5 t6

Figure 7.7 Priority inheritance with nested critical sections.

Push-through blocking. It occurs when a medium-priority job is blocked
by a lower-priority job that has inherited a higher priority from a job it
directly blocks. Push-through blocking is necessary to avoid unbounded
priority inversion.

Notice that, in most situations, when a task exits a critical section, it resumes
the priority it had when it entered. However, this is not true in general. Con
sider the example illustrated in Figure 7.7. Here, job Ji uses a resource Ra
guarded by a semaphore Sa, job J2 uses a resource Rb guarded by a semaphore
Sb, and job J3 uses both resources in a nested fashion {Sa is locked first). At
time tl, J2 preempts J3 within its nested critical section; hence, at time ^2,
when J2 attempts to lock Sb, J3 inherits its priority, P2' Similarly, at time
ts, J I preempts J3 within the same critical section and, at time ^4, when Ji
attempts to lock 5a, J3 inherits the priority Pi . At time ^5, when J3 unlocks
semaphore 5^, job J2 is awakened but Ji is still blocked; hence, J3 continues its
execution at the priority of J i . At time IQ, J3 unlocks Sa and, since no other
jobs are blocked, J3 resumes its original priority P3.

190 C H A P T E R 7

normal execution

î îiiiiiî i critical section

^ 2

J3

P2
P^

• a 1

• 1 b

i P 3

1 b

^

n ^
1 b 1 a I W{

t l t2 t3 t4 t5 t6

Figure 7.8 Example of transitive priority inheritance.

An example of transitive priority inheritance is shown in Figure 7.8. Here, job
Ji uses a resource Ra guarded by a semaphore Sa, job J3 uses a resource Rb
guarded by a semaphore Sb, and job J2 uses both resources in a nested fashion
{Sa protects the external critical section and Sb the internal one). At time
tl, J3 is preempted within its critical section by J2, which in turn enters its
first critical section (the one guarded by Sa), and at time 2̂ it is blocked on
semaphore Sb- As a consequence, J3 resumes and inherits the priority P2. At
time ^3, Js is preempted by J i , which at time t^ tries to acquire Ra- Since
Sa is locked by J2, J2 inherits Pi. However, J2 is blocked by J3; hence, for
transitivity J3 inherits the priority Pi via J2. When J3 exits its critical section,
no other jobs are blocked by it, thus it resumes its nominal priority P3. Priority
Pi is now inherited by J2, which still blocks Ji until time ^e-

7.3.3 Properties of the protocol

In this section, the main properties of the Priority Inheritance Protocol are
presented. These properties are then used to analyze the schedulability of a
periodic task set and compute the maximum blocking time that each task may
experience.

Resource Access Protocols 191

Lemma 7.1 A semaphore Sk can cause push-through blocking to job Ji, only
if Sk is accessed both by a job with priority lower than Pi and by a job that has
or can inherit a priority equal to or higher than Pi.

Proof. Suppose that semaphore Sk is accessed by a job J/ with priority lower
than Pi. If Sk is not accessed by a job that has or can inherit a priority equal
to or higher than Pi, then J/ cannot inherit a priority equal to or higher than
Pi. Hence, J/ will be preempted by Ji and the lemma follows, Q

Lemma 7.2 Transitive priority inheritance can occur only in the presence of
nested critical sections.

Proof. A transitive inheritance occurs when a high-priority job JH is blocked
by a medium-priority job JM^ which in turn is blocked by a low-priority job
JL (see the example of Figure 7.8). Since JH is blocked by JM, JM must hold
a semaphore, say Sa- But JM is also blocked by JL on a different semaphore,
say 5fe. This means that JM attempted to lock Sh inside the critical section
guarded by Sa- The lemma follows, Q

Lemma 7.3 / / there are n lower-priority jobs that can block a job Ji, then Ji
can be blocked for at most the duration of n critical sections (one for each of
the n lower-priority jobs), regardless of the number of semaphores used by Ji.

Proof. A job Ji can be blocked by a lower-priority job Jk only if Jk has been
preempted within a critical section, say Zkj, that can block Ji. Once Jk exits
Zkj^ it can be preempted by JJ; thus, Ji cannot be blocked by Jk again. The
same situation may happen for each of the n lower-priority jobs; therefore, Ji
can be blocked at most n times, Q

Lemma 7.4 / / there are m distinct semaphores that can block a job Ji, then
Ji can be blocked for at most the duration of m critical sections, one for each
of the m semaphores.

192 C H A P T E R 7

Proof. Since semaphores are binary, only one of the lower-priority jobs,
say Jfc, can be within a blocking critical section corresponding to a particular
semaphore Sj. Once Sj is unlocked, Jk can be preempted and can no longer
block Ji. If all m semaphores that can block Ji are locked by m lower-priority
jobs, then Ji can be blocked at most m times, Q

Theorem 7.1 (Sha-Rajkumar-Lehoczky) Under the Priority Inheritance
Protocol, a job J can be blocked for at most the duration o/min(n,7n) critical
sections, where n is the number of lower-priority jobs that could block J and m
is the number of distinct semaphores that can be used to block J.

Proof. It immediately follows from Lemma 7.3 and Lemma 7.4. Q

7.3.4 Schedulability analysis

The most important property of the Priority Inheritance Protocol for real-time
systems is that it bounds the maximum blocking time of each task. This allows
to perform a feasibility analysis and extend the Rate-Monotonic schedulability
test for sets of tasks with resource constraints. We recall that, in the absence
of blocking, a set of independent periodic tasks is schedulable by the Rate-
Monotonic algorithm if

E ^ < n(2V"-l) . (7.1)
1=1

In order to perform a worst-case analysis, let Bi be the maximum blocking
time, due to lower-priority jobs, that a job Ji may experience.

Theorem 7.2 A set of n periodic tasks using the Priority Inheritance Protocol
can be scheduled by the Rate-Monotonic algorithm if

Vi, l<i<n, ^ | * + | i < z (2 i / ' - l) . (7.2)

Resource Access Protocols 193

Proof . Suppose tha t for each task TJ equation (7.2) is satisfied. Then equation
(7.1) is also satisfied with n = i and Ci replaced by C* = (d + Bi). This means
tha t , in the absence of blocking, any job of task TJ will still meet its deadline
even if it executes for {Ci -h Bi) units of t ime. It follows tha t task r^, if it
executes for only Ci units of t ime, can be delayed by Bi and still meet its
deadline. Hence, the theorem follows, Q

In other words, the schedulability test expressed in equation (7.2) can be inter
preted as follows. In order to guarantee a task r^, we have to consider the effect
of preemptions from all higher-priority tasks (Xll=i ^k/Tk), the execution of r^
itself (Ci/Ti), and the effect of blocking due to all lower-priority tasks (Bi/Ti).

Suppose, for example, tha t we want to guarantee the following task set:

~ir]
J2

Js 1

1 Ci
1
1
2

Ti

2
4
8

Bi

1
1
0

Since the periods of these tasks are harmonic, the utilization bound for Ra te
Monotonic becomes 100%. Hence, we have to verify the following relations:

Ti Ti -

9i + 9l + El < 1
Ti ^ T2 T2 -

9l + ^ + ^ < 1.

Since all three equations hold, we can conclude tha t this task set is feasible and
all tasks will meet their deadlines. Notice tha t , if the fcth equation should not
be satisfied, we would know tha t task rjt would miss its deadline. In this case,
we could correct the implementation of this task to achieve a feasible schedule.

A simpler but less tight schedulability test can be found by observing t ha t

Bi

Ti
< max

Bj_

T,'

B,

Tn
-Z7- and i (2 i / " _ l) <i{2^/i -I).

194 C H A P T E R 7

As a consequence, the feasibility of the schedule can be guaranteed if the fol
lowing single equation holds:

The schedulability test based on tasks' response times can also be extended to
take resources into account. In this case, the blocking factor Bi must simply
be added to the computation time of each task. Thus, the recurrent equation
(4.12) for calculating the response time Ri becomes

Ri = Ci -\- Bi -{• y
Ri

Cj. (7.4)

Notice that, when introducing resource constraints, this test becomes only sufR-
cient, since tasks characterized by a long maximum blocking time could actually
never experience blocking.

7.3.5 Blocking t ime computation

The evaluation of the maximum blocking time for each task can be computed
based on the result of Theorem 7.1. However, a precise evaluation of the block
ing factor Bi is quite complex because each critical section of the lower-priority
tasks may interfere with Ji via direct blocking, push-through blocking or tran
sitive inheritance. In this section, we present a simplified algorithm that can
be used to compute the blocking factors of tasks that do not use nested crit
ical sections. In this case, in fact. Lemma 7.2 guarantees that no transitive
inheritance can occur; thus, the analysis of all possible blocking conditions is
simplified. The following notation is used to describe the algorithm:

cTj indicates the set of semaphores requested by Ji.

Pi J indicates the set of all critical sections of the lower-priority job Jj that
can block Jj.

7i,fc indicates the set of all critical sections guarded by semaphore Sk that
can block Jj.

Resource Access Protocols 195

Zi^k denotes the longest critical section of task r̂ among those guarded by
semaphore 5^.

Di^k denotes the duration of Zi^k-

Assuming that all durations Di^k are known (they can be estimated through
code analysis), the algorithm for computing the blocking factor Bi of a job Ji
can be logically divided into the following steps:

1. For each job Jj with priority lower than Pi, identify the set fiij of all
critical sections that can block Jj.

2. For each semaphore 5^, identify the set 7 ,̂̂ of all critical sections guarded
by Sk that can block Jj.

3. Sum the duration of the longest critical sections in each /J^j, for any job
Jj with priority lower than Pi\ let B\ be this sum.

4. Sum the duration of the longest critical sections in each 7^,^, for any
semaphore Sk\ let B^ be this sum.

5. Compute Bi as the minimum between B[and jBf.

The identification of the critical sections that can block a task can be greatly
simplified if for each semaphore Sk we define a ceiling C(5fc) to be the priority
of the highest-priority task that may use it:

C{Sk) =max(P;- :Sk e CTJ).

Then, the following lemma holds.

Lemma 7.5 In the absence of nested critical sections, a critical section Zj^k
of Jj guarded by Sk can block Ji only if Pj < Pi < C{Sk)'

Proof. If Pi < Pj, then job Ji cannot preempt JJ; hence, it cannot be
blocked by Jj directly. On the other hand, if C{Sk) < Pi, by definition of
C{Sk)^ any job that uses Sk cannot have or inherit a priority equal to or higher
than Pi. Hence, from Lemma 7.1, Zj^k cannot cause push-through blocking on
Ji. Finally, since there are no nested critical sections. Lemma 7.2 guarantees
that Zj^k cannot cause transitive blocking. The lemma follows, Q

196 C H A P T E R 7

Using the result of Lemma 7.5, the maximum blocking time Bi for each task
Ti can easily be determined as follows:

B^=mm(Bi,B',), (7.5)

where

n

B'i = Yl max[£),,fc : C{Sk) > Pi]
3=i+l

This computation is performed by the algorithm shown in Figure 7.9. This
algorithm assumes that the task set consists of n periodic tasks that use m
distinct binary semaphores. Tasks are ordered with decreasing priority, such
that Pi > Pj for all i < j . Critical sections are nonnested. Notice that the
blocking factor Bn is always zero, since there are no tasks with priority lower
than Pn that can block Tn. The complexity of the algorithm is 0{mn'^).

This algorithm provides an upper bound for the blocking factors Bi; however,
such a bound is not tight, since B[may be computed by considering two or
more critical sections guarded by the same semaphore. Obviously, if two critical
sections of different jobs are guarded by the same semaphore, they cannot be
both blocking (see Lemma 7.4). Similarly, Bf may be computed by considering
two or more critical sections belonging to the same job. But this cannot happen
(see Lemma 7.3). In order to exclude these cases, however, the complexity grows
exponentially because the maximum blocking time has to be computed among
all possible combinations of blocking critical sections. An algorithm based on
exhaustive search is presented in [Raj91]. It can find better bounds than those
found by the algorithm presented in this section, but it has an exponential
complexity.

Example

To illustrate the algorithm presented above, consider the following example, in
which four tasks share three semaphores. For each job Jj, the duration of the
longest critical section among those that use the same semaphore Sk is denoted
by Di^k and it is stored in a table. Di^k = 0 means that job Ji does not use
semaphore 5^. Suppose to have the following table (semaphore ceilings are
indicated in parentheses):

Resource Access Protocols 197

Blocking_Time(A,fc) {

for i = l t o n — 1 {

Bi := 0;
for j = i-hlton{

Djmax := 0;
for A; = 1 to m {

i^iC{Sk) >Pi) and(D,-fc

D.max = Dj^k'i

}
}
Bl := Bl + D.max;

}

B? := 0;
for fc = 1 to m {

Djmax := 0;

for j = i + lton{

if {C{Sk) > Pi) and
D.max — Dj^k\

}
}
B? := S | + D.max;

}

Bi := mm(B^, Bf);

}
S„ := 0;

}

iDj,k

/* for each task Ji */

/* for each Jj : Pj < Pi */ .

/* for all semaphores */

> Djmax) {

1* for all semaphores */

/* for each J, : Pj < P, */
> D.m,ax) {

Figure 7.9 Algorithm for computing the blocking factors.

198 C H A P T E R 7

pTj
J2

Js
J A \

1 ^l(^l)
i
0
8
6

52(Pl)

2
9
7
5

53(^2)
0
3
0
4

According to the algorithm shown in Figure 7.9, the blocking factors of the
tasks are computed as follows:

= = > Bi = 17
B[=9 + 8 + 6 = 23
Bl =8 + 9 = 17

B^2=S + 6 = U
B^ =8 + 7 + 4 = 19 ==> B2 = 14

B^^ = 6
^ ^ = 6 + 5 + 4 = 15 = = > B3=6

B\ = BI = 0 ==> B4=0

Note that B^ is computed by adding the duration of two critical sections both
guarded by semaphore Si.

7.3.6 Implementation considerations

The implementation of the Priority Inheritance Protocol requires a slight mod
ification of the kernel data structures associated with tasks and semaphores.
First of all, each task must have a nominal priority and an active priority,
which need to be stored in the Task Control Block (TCB). Moreover, in order
to speed up the inheritance mechanism, it is convenient that each semaphore
keeps track of the task holding the lock on it. This can be done by adding in
the semaphore data structure a specific field, say holder^ for storing the iden
tifier of the holder. In this way, a task that is blocked on a semaphore can
immediately identify the task that holds its lock for transmitting its priority.
Similarly, transitive inheritance can be simplified if each task keeps track of
the semaphore on which it is blocked. In this case, this information has to
be stored in a field, say lock, of the Task Control Block. Assuming that the
kernel data structures are extended as described above, the primitives pLwait
and pLsignal for realizing the Priority Inheritance Protocol can be defined as
follows.

Resource Access Protocols 199

pi_wait(s)

• If semaphore s is free, it becomes locked and the name of the executing
task is stored in the holder field of the semaphore data structure.

• If semaphore s is locked, the executing task is blocked on the s semaphore
queue, the semaphore identifier is stored in the lock field of the TCB, and
its priority is inherited by the task that holds s. If such a task is blocked
on another semaphore, the transitivity rule is applied. Then, the ready
task with the highest priority is assigned to the processor.

pi_signal(s)

• If the queue of semaphore s is empty (that is, no tasks are blocked on 5),
s is unlocked.

• If the queue of semaphore s is not empty, the highest-priority task in the
queue is awakened, its identifier is stored in s.holder, the active priority of
the executing task is updated and the ready task with the highest priority
is assigned to the processor.

7.3.7 Unsolved problems

Although the Priority Inheritance Protocol bounds the priority inversion phe
nomenon, the blocking duration for a job can still be substantial because a
chain of blocking can be formed. Another problem is that the protocol does
not prevent deadlocks.

Chained blocking

Consider three jobs J i , J2 and J3 with decreasing priorities that share two
semaphores Sa and 56. Suppose that Ji needs to sequentially access Sa and
56, J2 accesses 56, and J3 Sa- Also suppose that J3 locks Sa and it is preempted
by J2 within its critical section. Similarly, J2 locks 56 and it is preempted by
Ji within its critical section. The example is shown in Figure 7.10. In this
situation, when attempting to use its resources, Ji is blocked for the duration
of two critical sections, once to wait J3 to release Sa and then to wait J2 to
release 56. This is called a chained blocking. In the worst case, if Ji accesses n
distinct semaphores that have been locked by n lower-priority jobs, Ji will be
blocked for the duration of n critical sections.

200 C H A P T E R 7

normal execution

critical section

-Ja™™!_

Figure 7.10 Example of chained blocking.

normal execution

critical section
blocked on S ̂

y blocked on S .

t . to t i t .

wait(Sa)

waitCSb)

signal(Sb)

signal(Sa)

wait(Sb)

wait(Sa) 1

signal(Sa)

signaKS b)

Figure 7.11 Example of deadlock.

Deadlock

Consider two jobs that use two semaphores in a nested fashion but in reverse
order, as illustrated in Figure 7.11. Now suppose that, at time t i , J2 locks
semaphore Sb and enters its critical section. At time ^2, Ji preempts J2 before
it can lock Sa- At time ^3, Ji locks 5a, which is free, but then is blocked on 56
at time ^4. At this time, J2 resumes and continues the execution at the priority
of J i . Priority inheritance does not prevent a deadlock, which occurs at time
^5, when J2 attempts to lock Sa- Notice, however, that the deadlock does not
depend on the Priority Inheritance Protocol but is caused by an erroneous use
of semaphores. In this case, the deadlock problem can be solved by imposing
a total ordering on the semaphore accesses.

Resource Access Protocols 201

7.4 P R I O R I T Y CEILING P R O T O C O L

The Priority Ceiling Protocol (PCP) has been introduced by Sha, Rajkumar,
and Lehoczky [SRL90] to bound the priority inversion phenomenon and prevent
the formation of deadlocks and chained blocking.

The basic idea of this method is to extend the Priority Inheritance Protocol
with a rule for granting a lock request on a free semaphore. To avoid multiple
blocking, this rule does not allow a job to enter a critical section if there are
locked semaphores that could block it. This means that, once a job enters
its first critical section, it can never be blocked by lower-priority jobs until its
completion.

In order to realize this idea, each semaphore is assigned a priority ceiling equal
to the priority of the highest-priority job that can lock it. Then, a job J is
allowed to enter a critical section only if its priority is higher than all priority
ceilings of the semaphores currently locked by jobs other than J.

7.4.1 Protocol definition

The Priority Ceiling Protocol can be defined as follows:

Each semaphore Sk is assigned a priority ceiling C{Sk) equal to the priority
of the highest-priority job that can lock it. Note that C{Sk) is a static value
that can be computed off-line.

Let Ji be the job with the highest priority among all jobs ready to run;
thus, Ji is assigned the processor.

Let 5* be the semaphore with the highest-priority ceiling among all the
semaphores currently locked by jobs other than Ji and let C{S*) be its
ceiling.

To enter a critical section guarded by a semaphore Sk, Ji must have a
priority higher than C(5*). If Pi < C(5*), the lock on Sk is denied and
Ji is said to be blocked on semaphore 5* by the job that holds the lock on
5*.

When a job Ji is blocked on a semaphore, it transmits its priority to the
job, say Jk, that holds that semaphore. Hence, Jk resumes and executes

202 C H A P T E R 7

the rest of its critical section with the priority of Ji. Jk is said to inherit
the priority of Ji. In general, a task inherits the highest priority of the
jobs blocked by it.

When Jk exits a critical section, it unlocks the semaphore and the highest-
priority job, if any, blocked on that semaphore is awakened. Moreover, the
active priority of Jk is updated as follows: if no other jobs are blocked by
Jky Pk is set to the nominal priority Pk] otherwise, it is set to the highest
priority of the jobs blocked by Jfc.

Priority inheritance is transitive; that is, if a job J3 blocks a job J2, and
J2 blocks a job J i , then J3 inherits the priority of Ji via J2.

Example

In order to illustrate the Priority Ceiling Protocol, consider three jobs Jo, J i ,
and J2 having decreasing priorities. The highest-priority job Jo sequentially
accesses two critical sections guarded by semaphores So and Si; job Ji accesses
only a critical section guarded by semaphore 52; whereas job J2 uses semaphore
52 and then makes a nested access to Si. From tasks' resource requirements,
all semaphores are assigned the following priority ceilings:

r C(5o) = Po

C{Si)=Po

[C (5 2) - P i .

Now suppose that events evolve as illustrated in Figure 7.12.

• At time ^o, J2 is activated and, since it is the only job ready to run, it
starts executing and later locks semaphore 52.

• At time i i , Ji becomes ready and preempts J2.

• At time ^2, Ji attempts to lock 52, but it is blocked by the protocol
because Pi is not greater than C(52). Then, J2 inherits the priority of Ji
and resumes its execution.

• At time ^3, J2 successfully enters its nested critical section by locking 5i .
Note that J2 is allowed to lock Si because no semaphores are locked by
other jobs.

Resource Access Protocols 203

normal execution

W^m critical

Jo

J 1

'̂ 1
p,
P o

1
L
• S2 1
i P 2 :

section

_b

[82 SI 1

ce

SI

iling blocking

SO • SI

iiiiil

S2 ^9

^

to ti t2 t3 t4 t5 t6 ty tg tg

Figure 7.12 Example of Priority Ceiling Protocol.

At time t^, while J2 is executing at a priority p2 = -Pi, -̂ 0 becomes ready
and preempts J2 because PQ > P2-

At time ^5, Jo attempts to lock 5o, which is not locked by any job. However,
Jo is blocked by the protocol because its priority is not higher than C(5i) ,
which is the highest ceiling among all semaphores currently locked by the
other jobs. Since Si is locked by J2, J2 inherits the priority of Jo and
resumes its execution.

At time te, J2 exits its nested critical section, unlocks 5i , and, since Jo
is awakened, J2 returns to priority P2 — Pi- At this point, PQ > €{82);
hence, Jo preempts J2 and executes until completion.

At time fy, JQ is completed, and J2 resumes its execution at a priority
P2 = Pi^

At time ts, J2 exits its outer critical section, unlocks 52, and, since Ji is
awakened, J2 returns to its nominal priority P2. At this point, Ji preempts
J2 and executes until completion.

At time ^9, Ji is completed; thus, J2 resumes its execution.

204 C H A P T E R 7

blocked on S ,

^

Figure 7.13 An absurd situation that cannot occur under the Priority Ceiling
Protocol.

Notice that the Priority Ceiling Protocol introduces a third form of blocking,
called ceiling blocking, in addition to direct blocking and push-through blocking
caused by the Priority Inheritance Protocol. This is necessary for avoiding
deadlock and chained blocking. In the previous example, a ceiling blocking is
experienced by job Jo at time ^5.

7.4.2 Properties of the protocol

The main properties of the Priority Ceiling Protocol are presented in this sec
tion. They are used to analyze the schedulability and compute the maximum
blocking time of each task.

Lemma 7.6 If a job Jk is preempted within a critical section Za by a job Ji
that enters a critical section Zb, then, under the Priority Ceiling Protocol, Jk
cannot inherit a priority higher than or equal to that of job Ji until Ji completes.

Proof. If Jk inherits a priority higher than or equal to that of job Ji before
Ji completes, there must exist a job Jo blocked by J^, such that Po ^ Pi-
This situation is shown in Figure 7.13. However, this leads to the contradiction
that Jo cannot be blocked by J^. In fact, since Ji enters its critical section,
its priority must be higher than the maximum ceiling C* of the semaphores
currently locked by all lower-priority jobs. Hence, Po > Pi > C*. But since
Po > C*, Jo cannot be blocked by Jk, and the lemma follows, Q

Resource Access Protocols 205

J . ^ J ^ ^ . • . ^ J
1 2 n

F i g u r e 7.14 Deadlock among n jobs.

Lemma 7.7 T/ie Priority Ceiling Protocol prevents transitive blocking.

Proof. Suppose that a transitive block occurs; that is, there exist three
jobs J i , J2, and J3, with decreasing priorities, such that J3 blocks J2 and J2
blocks J i . By the transitivity of the protocol, J3 will inherit the priority of
J\. However, this contradicts Lemma 7.6, which shows that J3 cannot inherit
a priority higher than or equal to P2. Thus, the lemma follows, Q

Theorem 7.3 The Priority Ceiling Protocol prevents deadlocks.

Proof. Assuming that a job cannot deadlock by itself, a deadlock can only
be formed by a cycle of jobs waiting for each other, as shown in Figure 7.14. In
this situation, however, by the transitivity of the protocol, job Jn would inherit
the priority of J i , which is assumed to be higher than Pn- This contradicts
Lemma 7.6, and hence the theorem follows, Q

Theorem 7.4 (Sha-Rajkumar-Lehoczky) Under the Priority Ceiling Pro
tocol, a job Ji can be blocked for at most the duration of one critical section.

Proof. Suppose that Ji is blocked by two lower-priority jobs Ji and J2,
where P2 < P\ < Pi- Let J2 enter its blocking critical section first, and let
C | be the highest-priority ceiling among all the semaphores locked by J2- In
this situation, if job Ji enters its critical section we must have that Pi > C | .
Moreover, since we assumed that Ji can be blocked by J2, we must have that
Pi < C^- This means that Pi > C^ > Pi- This contradicts the assumption
that Pi > P2. Thus, the theorem follows, Q

206 C H A P T E R 7

7.4.3 Schedulability analysis

The feasibility test for a set of periodic tasks using the Priority CeiUng Protocol
can be performed by the same formulae shown for the Priority Inheritance
Protocol. The only difference is in the values of each blocking factor Bi, which,
for the Priority Ceiling Protocol, corresponds to the duration of the longest
critical section among those that can block TJ.

7.4.4 Blocking time computation

The evaluation of the maximum blocking time for each task can be computed
based on the result of Theorem 7.4. According to this theorem, a job Ji can be
blocked for at most the duration of the longest critical section among those that
can block Ji. The set of critical sections that can block a job Ji is identified by
the following lemma.

Lemma 7.8 Under the Priority Ceiling Protocol, a critical section Zj^k (be
longing to job Jj and guarded by semaphore Sk) can block a job Ji only if
Pj <Pi andC{Sk) >Pi-

Proof. Clearly, if Pj > Pi, Ji cannot preempt Jj and hence cannot be blocked
on Zj^k' Now assume Pj < Pi and C{Sk) < Pi^ and suppose that Ji is blocked
on Zj^k' We show that this assumption leads to a contradiction. In fact, if
Ji is blocked by Jj, its priority must be less than or equal to the maximum
ceiling C* among all semaphores locked by jobs other than Ji. Thus, we have
that C{Sk) < Pi < C*. On the other hand, since C* is the maximum ceihng
among all semaphores currently locked by jobs other than Ji, we have that
C* > C{Sk), which leads to a contradiction and proves the lemma, Q

Using the result of Lemma 7.8, the maximum blocking time Bi of job Ji can be
computed as the duration of the longest critical section among those belonging
to tasks with priority lower than Pi and guarded by a semaphore with ceiling
higher than or equal to Pi. If Dj^k denotes the duration of the longest critical
section of task TJ among those guarded by semaphore Sk, we can write

Bi - max{D,-fc | Pj < Pi, C{Sk) > Pi}. (7.6)

Resource Access Protocols 207

Consider the same example illustrated for the Priority Inheritance Protocol.
For each job Ji, the duration of the longest critical section among those guarded
by semaphore Sk is denoted by Di^k and it is stored in a table. Di^k = 0 means
that job Ji does not use semaphore 5^. Semaphore ceilings are indicated in
parentheses:

IT]
J2

Js
J A

1 S,{P,)
1
0
8
6

52 (Pi)

2
9
7
5

53 (P2)

0
3
0
4

According to equation (7.6), tasks' blocking factors are computed as follows:

Bi =: max(8,6,9, 7,5) = 9
B2 =max(8,6,7,5,4) ^ 8
P3 = max(6,5,4) ^ 6
B^ = 0.

7.4.5 Implementation considerations

The major implication of the Priority Ceiling Protocol in the kernel data struc
tures is that semaphores queues are no longer needed, since the tasks blocked
by the protocol can be kept in the ready queue. In particular, whenever a job Ji
is blocked by the protocol on a semaphore Sk, the job Jh that holds Sk inherits
the priority of Ji and it is assigned to the processor, whereas Ji returns to the
ready queue. As soon as Jh unlocks 5^, ph is updated and, \i Ph becomes less
than the priority of the first ready job, a context switch is performed.

To implement the Priority Ceiling Protocol, each semaphore Sk has to store the
identifier of the task that holds the lock on Sk and the ceiling of Sk- Moreover,
an additional field for storing the task active priority has to be reserved in
the task control block. It is also convenient to have a field in the task control
block for storing the identifier of the semaphore on which the task is blocked.
Finally, the implementation of the protocol can be simplified if the system also
maintains a list of currently locked semaphores, order by decreasing priority
ceilings. This list is useful for computing the maximum priority ceiling that
a job has to overcome to enter a critical section and for updating the active
priority of tasks at the end of a critical section.

208 CHAPTER 7

If the kernel data structures are extended as described above, the primitives
pc.wait and pcsignal for reahzing the Priority Ceihng Protocol can be defined
as follows.

pc_wait(s)

Find the semaphore 5* having the maximum ceiling C* among all the
semaphores currently locked by jobs other than the one in execution (Jexe)-

If Pexe < C**, transfer Pexe to the job that holds 5*, insert Jexe in the
ready queue, and execute the ready job (other than Jexe) with the highest
priority.

If Pexe > C*, or whenever s is unlocked, lock semaphore 5, add s in the
list of currently locked semaphores and store Jexe in s.holder.

pc_signal(s)

Extract s from the list of currently locked semaphores.

If no other jobs are blocked by Jexe, set pexe = Pexe-, else set pexe to the
highest priority of the jobs blocked by Jexe-

Let p* be the highest priority among the ready jobs. If Pexe < P*, insert
Jexe in the ready queue and execute the ready job (other than Jexe) with
the highest priority.

7.5 STACK RESOURCE POLICY

The Stack Resource PoUcy (SRP) is a technique proposed by Baker [Bak91] for
accessing shared resources. It extends the Priority Ceiling Protocol (PCP) in
three essential points:

1. It allows the use of multiunit resources.

2. It supports dynamic priority scheduling.

3. It allows the sharing of runtime stack-based resources.

Resource Access Protocols 209

From a scheduling point of view, the essential difference between the PCP and
the SRP is on the time at which a task is blocked. Whereas under the PCP
a task is blocked at the time it makes its first resource request, under the
SRP a task is blocked at the time it attempts to preempt. This early blocking
slightly reduces concurrency but saves unnecessary context switches, simplifies
the implementation of the protocol, and allows the sharing of runtime stack
resources.

7.5.1 Definit ions

Before presenting the formal description of the SRP we introduce the following
definitions.

Priority

Each task TJ is assigned a priority pi that indicates the importance (that is,
the urgency) of Tf with respect to the other tasks in the system. Priorities can
be assigned to tasks either statically or dynamically. At any time t, Pa > Pb
means that the execution of Ta is more important than that of r^; hence, r̂
can be delayed in favor of TQ. For example, priorities can be assigned to tasks
based on Rate Monotonic (RM) or Earliest Deadline First (EDF).

Preemption level

Besides a priority pi, a task r̂ is also characterized by a preemption level TT̂ .
The preemption level is a static parameter, assigned to a task at its creation
time and associated with all instances of that task. The essential property of
preemption levels is that a job Ja can preempt another job Jt only if TTa > TTt.
This is also true for priorities. Hence, the reason for distinguishing preemption
levels from priorities is that preemption levels are fixed values that can be used
to predict potential blocking also in the presence of dynamic priority schemes.
The general definition of preemption level used to prove all properties of the
SRP requires that

if Ja arrives after Jb and Ja has higher priority than Jb, then Ja must
have a higher preemption level than Jb.

210 C H A P T E R 7

A D ,

1 D 2

I
d i

V -
(a)

"•2

1 i

n

D l

) i D 2

T
d i

Y
(b)

1*2

Figure 7.15 Although 7r2 > TTI, under EDF p2 can be higher than pi (a) or
lower than pi (b).

Under EDF scheduling, the previous condition is satisfied if preemption levels
are ordered inversely with respect to the order of relative deadlines; that is,

TTi > TTj Di <Dj.

To better illustrate the difference between priorities and preemption levels,
consider the example shown in Figure 7.15. Here we have two jobs Ji and J2,
with relative deadlines Di = 10 and D2 = 5, respectively. Being D2 < Di, we
define m = 1 and 7r2 = 2. Since TTI < 7r2, Ji can never preempt J2; however,
Ji may have a priority higher than that of J2. In fact, under EDF, the priority
of a job is dynamically assigned based on its absolute deadline. For example,
in the case illustrated in Figure 7.15a, the absolute deadlines are such that
d2 < di\ hence, J2 will have higher priority than J i . On the other hand, as
shown in Figure 7.15b, if J2 arrives a time ri + 6, absolute deadlines are such
that d2> di\ hence, Ji will have higher priority than J2.

Notice that, in the case of Figure 7.15b, although Ji has priority higher than J2,
J2 cannot be preempted. This happens because, when di < o?2 and Di > D2,
Ji always starts before J2; thus, it does not need to preempt J2.

Resource Access Protocols 211

pn
J2
Js 1

1 Pi
5
10
20

TTi _

"in
2
1

1 ̂ ^L^
] i

2
3

Mfi2

0
1
1

fJ'RS

1
3
1

Figure 7.16 Task parameters and resource requirements.

Resource ceiling

Each resource R is required to have a current ceiling CR, which is a dynamic
value computed as a function of the units of R that are currently available. If
riR denotes the number of units of R that are currently available and fiR{J)
denotes the maximum requirement of job J for R, the current ceiling of R is
defined to be

CRiriR) = max[{0}u{7r(J) i n n </x/?(J)}].

In other words, if all units of R are available, then CR — 0. However, if the
units of R that are currently available cannot satisfy the requirement of one or
more jobs, then CR is equal to the highest preemption level of those jobs that
could be blocked on R.

To better clarify this concept, consider the following example, where three tasks
(J i , J2, J3) share three resources (i^i, R2, R3), consisting of three, one, and
three units, respectively. All tasks parameters - relative deadlines, preemption
levels, and resource requirements - are shown in Figure 7.16.

Based on these requirements, the current ceilings of the resources as a function
of the number UR of available units are reported in Figure 7.17 (dashes identify
impossible cases).

Let us compute, for example, the ceiling of resource Ri when only two units
(out of three) are available. From Figure 7.16, we see that the only job that
could be blocked in this condition is J3 because it requires three units of i^i;
hence, CRI{2) = TTS = 1. If only one unit of Ri is available, the jobs that could
be blocked are J2 and J3; hence, CRI{1) = max(7r2,7r3) = 2. Finally, if none
of the units of Ri is available, all three jobs could be blocked on Ri; hence,
CRI{0) = max(7ri,7r2,7r3) = 3.

212 C H A P T E R 7

'W]
R2
R3 \

1 CR{3)

0
-
0

CR(2)

1
-
2

CR{1)

2
0
2

CR{0)

3
2
3

Figure 7.17 Resource ceilings as a function of the number of available units.
Dashes identify impossible cases.

Notice that, in the specific case of resources having a single unit (binary re
sources), the definition of current ceiHng can be simphfied as follows:

CR = max({0} U {7r(J) : R could block J}).

This means that, if R is free, its ceiling is zero, whereas if R is busy, its ceiling
is equal to the highest preemption level of the jobs that require R.

System ceiling

The resource access protocol adopted in the SRP also requires a system ceiling,
Us, defined as the maximum of the current ceilings of all the resources; that is.

Us = max(C/?^ : z = 1 , . . . , m).

Notice that n^ is a dynamic parameter that can change every time a resource
is accessed or released by a job.

7.5.2 Protocol definition

The key idea of the SRP is that, when a job needs a resource that is not
available, it is blocked at the time it attempts to preempt, rather than later.
Moreover, to prevent multiple priority inversions, a job is not allowed to start
until the resources currently available are sufficient to meet the maximum re
quirement of every job that could preempt it. Using the definitions introduced
in the previous paragraph, this is achieved by the following preemption test:

A job is not permitted to preempt until its priority is the highest
among those of all the jobs ready to run, and its preemption level is
higher than the system ceiling.

Resource Access Protocols 213

If the ready queue is ordered by decreasing priorities, the preemption test can
be simply performed by comparing the preemption level 7r(J) of the ready job
with the highest priority (the one at the head of the queue) with the system
ceiling. If 7r(J) > H^, job J is executed, otherwise it is kept in the ready queue
until ris becomes less than 7r(J). The condition 7r(J) > lis has to be tested
every time Us may decrease; that is, every time a resource is released.

Observations

The implications that the use of the SRP has on tasks' execution can be better
understood through the following observations:

Passing the preemption test for job J ensures that the resources that are
currently available are sufficient to satisfy the maximum requirement of job
J and the maximum requirement of every job that could preempt J. This
means that, once J starts executing, it will never be blocked for resource
contention.

Although the preemption test for a job J is performed before J starts to
execute, resources are not allocated at this time but only when requested.

A task can be blocked by the preemption test even though it does not
require any resource. This is needed to avoid unbounded priority inversion.

Blocking at preemption time, rather than at access time, decreases the
number of context switches, reduces the run-time overhead, and simplifies
the implementation of the protocol.

The preemption test has the effect of imposing priority inheritance; that
is, an executing job that holds a resource modifies the system ceiling and
resists preemption as though it inherits the priority of any jobs that might
need that resource. Note that this effect is accomplished without modifying
the priority of the job.

Example

In order to illustrate how the SRP works, consider the task set already de
scribed in Figure 7.16. The structure of the tasks is shown in Figure 7.18,
where wait{Ri^n) denotes the request of n units of resource i^j, and signal{Ri)
denotes their release. The current ceilings of the resources have already been

214 C H A P T E R 7

wait(R3, 1)

wait(Ri, 1)

signal(Ri)

signal(R3)

wait(R3, 3)

wait(R2, 1)

1 signal(R2)

signal(R3)

=
wait(Ri, 2)

signal(Ri)

wait(R2, 1)

wait(R,, 3)

signal(Ri)

signal(R2)

Z =

wait(R3, 1)

signal(R3)

Figure 7.18 Structure of the tasks in the SRP example.

Hs

3 1 3

t i t^

A

^1 ^ 1

3 H *

2-] 1 1
1 -J :

3| 2 | 3 H l | i

1 2| ; : : H 3 H]/

t , t 3 U t 5 t 6 t 7 t 8 t9

Figure 7.19 Example of a schedule under EDF and SRP. Numbers on tasks
execution denote the resource indexes.

shown in Figure 7.17, and a possible EDF schedule for this task set is de
picted in Figure 7.19. In this figure, the fourth timeline reports the variation
of the system ceiling, whereas the numbers along the schedule denote resource
indexes.

Resource Access Protocols 215

At time ô̂ -̂ 3 starts executing and the system ceiling is zero because all re
sources are completely available. When J3 enters its first critical section, it
takes the only unit of i?2; thus, the system ceiling is set to the highest preemp
tion level among the tasks that could be blocked on R2 (see Figure 7.17); that
is, II5 = 7r2 = 2. As a consequence, J2 is blocked by the preemption test and
J3 continues to execute. Note that when J3 enters its nested critical section
(taking all units of Ri), the system ceiling is raised to lis — ni = 3 . This
causes Ji to be blocked by the preemption test.

As J3 releases i^i (at time ^2), the system ceiling becomes n^ = 2; thus, Ji
preempts J3 and starts executing. Note that, once Ji is started, it is never
blocked during its execution because the condition TTI > lis guarantees that
all the resources needed by Ji are available. As Ji terminates, J3 resumes the
execution and releases resource R2. As R2 is released, the system ceiling returns
to zero and J2 can preempt J3. Again, once J2 is started, all the resources it
needs are available; thus, J2 is never blocked.

7.5.3 Properties of the protocol

The main properties of the Stack Resource Policy are presented in this section.
They will be used to analyze the schedulability and compute the maximum
blocking time of each task.

Lemma 7.9 If the preemption level of a job J is greater than the current ceiling
of a resource R, then there are sufficient units of R available to

1. Meet the maximum requirement of J and

2. Meet the maximum requirement of every job that can preempt J.

Proof. Assume 7r(J) > C^, but suppose that the maximum request of J for
R cannot be satisfied. Then, by definition of current ceiling of a resource, we
have CR > 7r(J), which is a contradiction.

Assume 7r(J) > CR, but suppose that there exists a job JH that can preempt J
such that the maximum request of JH for R cannot be satisfied. Since JH can
preempt J, it must be TT{JH) > 7r(J). Moreover, since the maximum request
of JH for R cannot be satisfied, by definition of current ceiling of a resource,
we have CR > TT{JH)' Hence, we derive that 7r(J) < CR, which contradicts the
assumption, Q

216 CHAPTER 7

Theorem 7.5 (Baker) If no job J is permitted to start until 7r(J) > lis, then
no job can be blocked after it starts.

Proof. Let Â be the number of tasks that can preempt a job J and assume
that no job is permitted to start until its preemption level is greater than rig.
The thesis will be proved by induction on A .̂

If Â = 0, there are no jobs that can preempt J. If J is started when 7r(J) > Us,
Lemma 7.9 guarantees that all the resources required by J are available when
J preempts; hence, J will execute to completion without blocking.

If A' > 0, suppose that J is preempted by JH- If JH is started when 7T{JH) >
Us, Lemma 7.9 guarantees that all the resources required by JH are avail
able when JH preempts. Since any job that preempts JH also preempts J,
the induction hypothesis guarantees that JH executes to completion without
blocking, as will any job that preempts J//, transitively. When all the jobs
that preempted J complete, J can resume its execution without blocking, since
the higher-priority jobs released all resources and when J started the resources
available were sufficient to meet the maximum request of J. Q

Theorem 7.6 (Baker) Under the Stack Resource Policy, a job Ji can be
blocked for at most the duration of one critical section.

Proof. Suppose that Ji is blocked for the duration of two critical sections
shared with two lower-priority jobs, Ji and J2. Without loss of generality,
assume 1^2 < TTI < TT̂ . This can happen only if Ji and J2 hold two different
resources (such as R\ and R2) and J2 is preempted by Ji inside its critical
section. This situation is depicted in Figure 7.20. This immediately yields to a
contradiction. In fact, since Ji is not blocked by the preemption test, we have
TTi > Us' On the other hand, since Ji is blocked, we have TT̂ < Ilg. Hence, we
obtain that TT̂ < TTI , which contradicts the assumption, Q

Theorem 7.7 (Baker) The Stack Resource Policy prevents deadlocks.

Proof. By Theorem 7.5, a job cannot be blocked after it starts. Since a job
cannot be blocked while holding a resource, there can be no deadlock, Q

Resource Access Protocols 217

J .

Hi R2 I

Rl

R l I R 2 1]i

Rl

Figure 7.20 An absurd situation that cannot occur under SRP.

7.5.4 Schedulability analysis

As far as the schedulability analysis is concerned, the considerations done for
the Priority Ceiling Protocol are also valid for the Stack Resource Policy, since
the general result does not depend on the time on which a job is blocked.
However, if the SRP is used along with the EDF scheduling algorithm, the
guarantee test has to be modified by considering that under EDF the least
upper bound of the processor utilization factor is 1.

As a result, a set of n periodic tasks using the Stack Resource Policy can be
scheduled by the EDF algorithm if

Vi, 1 < i < n, E Tk +
Bi

< 1. (7.7)

As for the PCP, Ci denotes the worst-case execution time of task r^, Ti denotes
its period, and Bi its maximum blocking time. For each task TJ, the sum
in parentheses represents the utilization factor due to TI itself and to all tasks
having a preemption level higher than TT̂ , whereas the term Bi/Ti considers the
blocking time caused by tasks having preemption level lower than TT̂ . Condition
(7.7) can easily be extended to periodic tasks with deadlines less than periods.
In this case, the schedulability test is modified as follows:

Vz, 1 < i < n. (7.8)

A more precise schedulability condition can be achieved through a processor
demand approach [BRH90, JS93]. In particular, equation (4.18) has been ex
tended in [BL97, Lip97], where it is proved that a set of periodic tasks that use

218 C H A P T E R 7

shared resources with SRP is schedulable by EDF if for all L > 0 and for all
l<i<n

E
k=i

L-D.
+ l]Ck +

L-Dj

Ti
+ \]Bi < L. (7.9)

7.5.5 Blocking t ime computat ion

The maximum blocking time that a job can experience with the SRP is the
same as the one that can be experienced with the Priority Ceiling Protocol.
Theorem 7.6, in fact, guarantees that under the SRP a job Ji can be blocked
for at most the duration of one critical section among those that can block
Ji. Lemma 7.8, proved for the PCP, can be easily extended to the SRP, thus
a critical section Zj^k belonging to job Jj and guarded by semaphore Sk can
block a job Ji only if TTJ < TTI and max(C5^) > TTJ. Notice that, under the SRP,
the ceiling of a semaphore is a dynamic variable, so we have to consider its
maximum value, that is the one corresponding to a number of units currently
available equal to zero.

Hence, the maximum blocking time Bi of job Ji can be computed as the du
ration of the longest critical section among those belonging to tasks with pre
emption level lower than TTJ and guarded by a semaphore with maximum ceiling
higher than or equal to TT̂ . If Dj^k denotes the duration of the longest critical
section of task TJ among those guarded by semaphore Sk, we can write

Bi = max{Dj^k TTj < TTi, Cs,X^) > ^i}' (7.10)

7.5.6 Sharing runt ime stack

Another interesting implication deriving from the use of the SRP is that it
supports stack sharing among tasks. This is particularly convenient for those
applications consisting of a large number of tasks, dedicated to acquisition,
monitoring, and control activities. In conventional operating systems, each
process must have a private stack space, sufficient to store its context (that is,
the content of the CPU registers) and its local variables. A problem with these
systems is that, if the number of tasks is large, a great amount of memory may
be required for the stacks of all the tasks.

Resource Access Protocols 219

Stack 4

stack 3

stack 2

stack 1

t i t2 t3 t6 t7

Figure 7.21 Possible evolution with one stack per task.

For example, consider four jobs J i , J2, J3, and J4, with preemption levels 1,
2, 2, and 3, respectively (3 being the highest preemption level). Figure 7.21
illustrates a possible evolution of the stacks, assuming that each job is allocated
its own stack space, equal to its maximum requirement. At time ^1, Ji starts
executing; J2 preempts at time 2̂ înd completes at time ^3, allowing Ji to
resume. At time ^4, Ji is preempted by J3, which in turn is preempted by J4
at time ^5. At time te, J A completes and J3 resumes. At time t-j, J3 completes
and Ji resumes.

Note that the top of each process stack varies during the process execution,
while the storage region reserved for each stack remains constant and corre
sponds to the distance between two horizontal lines. In this case, the total
storage area that must be reserved for the application is equal to the sum of
the stack regions dedicated to each process.

However, if all tasks are independent or use the SRP to access shared resources,
then they can share a single stack space. In this case, when a job J is preempted
by a job J', J maintains its stack and the stack of J' is allocated immediately
above that of J . Figure 7.22 shows a possible evolution of the previous task set
when a single stack is allocated to all tasks.

Under the SRP, stack overlapping without interpenetration is a direct con
sequence of Theorem 7.5. In fact, since a job J can never be blocked once
started, its stack can never be penetrated by the ones belonging to jobs with
lower preemption levels, which can resume only after J is completed.

220 C H A P T E R 7

Stack 3

stack 4

stack 2

stack 1

1

I

~i

1

\

I

r

r

^.J
J 2 n V" 1 1 '

^ i ' .

1 1 r^> L ^
1 '

\ \
tl t2 t3 t4 t5 t6 t7

Figure 7.22 Possible evolution with a single stack for all tasks.

Note that the stack space between the two upper horizontal Hnes (which is
equivalent to the minimum stack between J2 and J3) is no longer needed, since
J2 and J3 have the same preemption level, so they can never occupy stack space
at the same time. In general, the higher the number of tasks with the same
preemption level, the larger stack saving.

For example, consider an application consisting of 100 jobs distributed on 10
preemption levels, with 10 jobs for each level, and suppose that each job needs
up to 10 Kbytes of stack space. Using a stack per job, 1000 Kbytes would
be required. On the contrary, using a single stack, only 100 Kbytes would be
sufficient, since no more than one job per preemption level could be active at
one time. Hence, in this example we would save 900 Kbytes; that is, 90%. In
general, when tasks are distributed on k preemption levels, the space required
for a single stack is equal to the sum of the largest request on each level.

7.5.7 Implementation considerations

The implementation of the SRP is similar to that of the PCP, but the locking
operations {srp.wait and srp.signal) are simpler, since a job can never be
blocked when attempting to lock a semaphore. When there are no sufficient
resources available to satisfy the maximum requirement of a job, the job is not
permitted to preempt and is kept in the ready queue.

To simplify the preemption test, all the ceilings of the resources (for any number
of available units) can be precomputed and stored in a table. Moreover, a stack

Resource Access Protocols 221

can be used to keep track of the system ceiling. When a resource R is allocated,
its current state, UR, is updated and, if CR{nR) > Eg, then Us is set to CR{nR).
The old values of UR and lis are pushed onto the stack. When resource R is
released, the values of II^ and UR are restored from the stack. If the restored
system ceiling is lower than the previous value, the preemption test is executed
on the ready job with the highest priority to check whether it can preempt.
If the preemption test is passed, a context switch is performed; otherwise, the
current task continues its execution.

7.6 SUMMARY

The concurrency control protocols presented in this chapter can be compared
with respect to several characteristics. Figure 7.23 provides a qualitative eval
uation of the algorithms in terms of priority assignment, number of blockings,
instant of blocking, programming transparency, deadlock prevention, imple
mentation, and complexity for computing the blocking factors. Notice that
the Priority Inheritance Protocol (PIP), although not so effective in terms of
performance, is the only one that is transparent at the programming level.
The other protocols, in fact, require the user to specify the list of resources
used by each task, in order to compute the ceiling values. This feature of PIP
makes it actractive for commercial operating systems (like VxWorks), where
predictability can be improved without introducing new kernel primitives.

PIP

PCP

SRP

priority
assignment

fixed

fixed

fixed
or

dynamic

number of
blocking

min(n,m)

1

1

blocking
instant

on resource
access

on resource
access

on
preemption

transp
arency

YES

NO

NO

deadlock
prevention

NO

YES

YES

implem
entation

hard

medium

easy

Bi 1
computation

hard

easy

easy

Figure 7.23 Evaluation summary of resource access protocols.

222 C H A P T E R 7

Exercises

7.1 Verify whether the following task set is schedulable by the Rate-Monotonic
algorithm (try both the processor utilization and the worst-case response
approach):

~cr]
Bi
Ti

1 '̂ i

r^
5
10

T2

3
3
15

T3

2
0

20

7.2 Consider three periodic tasks r i , r2, and rs (having decreasing priority),
which share four resources, A, B, C, and D, accessed using the Priority
Inheritance Protocol. Compute the maximum blocking time Bi for each
task, knowing that the longest duration Dm for a task r̂ on resource R
is given in the following table (there are no nested critical sections):

n
T2

rs

1 A

P~
4

1 ^

B

2
0
1

C

4
6
0

D

6
8
5

7.3 Solve the same problem described in Exercise 7.2 when the resources are
accessed by the Priority Ceiling Protocol.

7.4 Consider four periodic tasks r i , r2, T3, and T4 (having decreasing prior
ity), which share five resources. A, B, C, D, and E, accessed using the
Priority Inheritance Protocol. Compute the maximum blocking time Bi
for each task, knowing that the longest duration DiR for a task TI on
resource R is given in the following table (there are no nested critical
sections):

n
T2

rs
TA

1 A
VW

10
0
10

B

~^
0
3
0

c
~ 9 ~

7
0
8

D

"~8~
0
7
0

E

~ 0 ~
6
13
5

7.5 Solve the same problem described in Exercise 7.4 when the resources are
accessed by the Priority Ceiling Protocol.

Resource Access Protocols 223

7.6 Consider three tasks J i , J2, and J3, which share three multiunit re
sources, A, B^ and C, accessed using the Stack Resource Pohcy. Re
sources A and B have three units, whereas C has two units. Compute
the ceihng table for all the resources based on the following task charac
teristics:

pT]
h
Js 1

1 Pi
5
10
20

Mfii

1
2
3

I^R2

0
1
1

/i/?3

1
3
1

