
8
HANDLING OVERLOAD

CONDITIONS

8.1 INTRODUCTION

This chapter deals with the problem of scheduling real-time tasks in overload
conditions; that is, in those critical situations in which the computational de
mand requested by the task set exceeds the time available on the processor,
and hence not all tasks can complete within their deadlines.

In real-world applications, even when the system is properly designed and sized,
a transient overload can occur for different reasons, such as changes in the en
vironment, simultaneous arrivals of asynchronous events, faults of peripheral
devices, or system exceptions. The major risk that could occur in these situa
tions is that some critical task could miss its deadline, jeopardizing the correct
behavior of the whole system.

If the operating system is not conceived to handle overloads, the effect of a tran
sient overload can be catastrophic. Experiments carried out by Locke [Loc86]
have shown that EDF can rapidly degrade its performance during overload in
tervals. This is due to the fact that EDF gives the highest priority to those
processes that are close to missing their deadlines. There are cases in which
the arrival of a new task can cause all the previous tasks to miss their dead
lines. Such an undesirable phenomenon, called the Domino effect, is depicted
in Figure 8.1.

Figure 8.1a shows a feasible schedule of a task set executed under EDF. How
ever, if at time ô task Jo is executed, all the previous tasks miss their deadlines
(see Figure 8.1b). In such a situation, EDF does not provide any type of guar
antee on which tasks meet their timing constraints. This is a very undesirable

226 C H A P T E R 8

behavior in those control apphcations in which a critical subset of tasks has
to be guaranteed in all anticipated load conditions. In order to avoid domino
effects, the operating system and the scheduling algorithm must be explicitly
designed to handle transient overloads in a controlled fashion, so that the dam
age due to a deadline miss can be minimized.

J 3

jzzi

1_JL

(a)

J2
1

1 1
A

A

^

• i 1

•li—1
to (b)

Figure 8.1 a. Feasible schedule with Earliest Deadline First, in normal load
condition, b . Overload with domino effect due to the arrival of task JQ.

In the real-time literature, several scheduling algorithms have been proposed
to deal with overloads. In 1984, Ramamritham and Stankovic [RS84] used
EDF to dynamically guarantee incoming work via on-line planning, and, if a
newly arriving task could not be guaranteed, the task was either dropped or
distributed scheduling was attempted. The dynamic guarantee performed in
this approach had the effect of avoiding the catastrophic effects of overload on
EDF.

Handling Overload Conditions 227

In 1986, Locke [Loc86] developed an algorithm that makes a best effort at
scheduHng tasks based on earliest deadline with a rejection policy based on re
moving tasks with the minimum value density. He also suggested that removed
tasks remain in the system until their deadline has passed. The algorithm com
putes the variance of the total slack time in order to find the probability that
the available slack time is less than zero. The calculated probability is used to
detect a system overload. If it is less than the user prespecified threshold, the
algorithm removes the tasks in increasing value density order.

In Biyabani et. al. [BSR88] the previous work of Ramamritham and Stankovic
was extended to tasks with different values, and various policies were studied
to decide which tasks should be dropped when a newly arriving task could not
be guaranteed. This work used values of tasks such as in Locke's work but used
an exact characterization of the first overload point rather than a probabilistic
estimate that overload might occur.

Haritsa, Livny, and Carey [HLC91] presented the use of a feedback controlled
EDF algorithm for use in real-time database systems. The purpose of their work
was to obtain good average performance for transactions even in overload. Since
they were working in a database environment, they assumed no knowledge of
transaction characteristics, and they considered tasks with soft deadlines that
are not guaranteed.

In real-time Mach [TWW87] tasks were ordered by EDF and overload was
predicted using a statistical guess. If overload was predicted, tasks with least
value were dropped.

Other general work on overload in real-time systems has also been done. For
example, Sha [SLR88] showed that the Rate-Monotonic algorithm has poor
properties in overload. Thambidurai and Trivedi [TT89] studied transient over
loads in fault-tolerant real-time systems, building and analyzing a stochastic
model for such systems. However, they provided no details on the schedul
ing algorithm itself. Schwan and Zhou [SZ92] did on-line guarantees based on
keeping a slot list and searching for free-time intervals between slots. Once
schedulability is determined in this fashion, tasks are actually dispatched using
EDF. If a new task cannot be guaranteed, it is discarded.

Zlokapa, Stankovic, and Ramamritham [Zlo93] proposed an approach called
well-time scheduling^ which focuses on reducing the guarantee overhead in
heavily loaded systems by delaying the guarantee. Various properties of the
approach were developed via queueing theoretic arguments, and the results

228 C H A P T E R 8

were a multilevel queue (based on an analytical derivation), similar to that
found in [HLC91] (based on simulation).

More recent approaches will be described in the following sections. Before
presenting specific methods and theoretical results on overload, the concept
of overload, and, in general, the meaning of computational load for real-time
systems is defined in the next section.

8.2 LOAD DEFINITIONS

In a real-time system, the definition of computational workload depends on
the temporal characteristics of the computational activities. For non-real-time
or soft real-time tasks, a commonly accepted definition of workload refers to
the standard queueing theory, according to which a load p, also called traffic
intensity, represents the expected number of job arrivals per mean service time.
If C is the mean service time and A is the average interarrival rate of the jobs,
the load can be computed as

p = XC.

Notice that this definition does not take deadlines into account; hence, it is
not particularly useful to describe real-time workloads. In a hard real-time
environment, a system is overloaded when, based on worst-case assumptions,
there is no feasible schedule for the current task set, so one or more tasks will
miss their deadline.

If the task set consists of n independent preemptable periodic tasks, whose
relative deadlines are equal to their period, then the system load p is equivalent
to the processor utilization factor:

Ci ^-E^^
1=1

where Ci and Ti are the computation time and the period of task TI , respectively.
In this case, a load p > 1 means that the total computation time requested by
the periodic activities in their hyperperiod exceeds the available time on the
processor; therefore, the task set cannot be scheduled by any algorithm.

For a generic set of real-time jobs that can be dynamically activated, the system
load varies at each job activation and it is a function of the jobs' deadlines. A
general definition of load has been proposed by Baruah et al. [BKM~^92], who

Handling Overload Conditions 229

J i

J2

J3

j f g s a

2 3 4 5 6 7

t

P,(t) = 2/3

P.(t) = 3/4

p3(t) = 4/6

p (t) = 3/4

Figure 8.2 Load calculation for a set of three real-time tasks.

say that a hard real-time environment has a loading factor p if and only if it
is guaranteed that there will be no interval of time [tx^ty] such that the sum
of the execution times of all jobs making requests and having deadlines within
this interval is greater than p{ty — tx). Although this definition is quite general
and of theoretical value, it is of little practical use for load calculation, since
the number of intervals [tx.ty] can be very large.

A simpler method for calculating the load in a dynamic real-time environment
has been proposed by Buttazzo and Stankovic in [BS95], where the load is
computed at each job activation (r^), and the number of intervals in which the
computation in done is limited by the number of deadlines (di). The method for
computing the load is based on the consideration that, for a single job J^, the
load is given by the ratio of its computation time Ci and its relative deadline
Di = di - Ti. For example, if Ci = Di (that is, the job does not have slack
time), the load in the interval [vi.di] is one. When a new job arrives, the load
can be computed from the last request time, which is also the current time ,̂
and the longest deadline, say dn- In this case, the intervals that need to be
considered for the computation are [^,c?i], [^,(i2], • • •, [t.dn]- In general, the
processor load in the interval [t, di] is given by

Pi{t) =
Erf,<d. f̂c(̂)

{di - t) '

where Ck(t) refers to the remaining execution time of job Jk with deadline less
than or equal to di. Hence, the total load in the interval [t, dn] can be computed
as the maximum among all Pi{t)\ that is,

p = max pi{t).
i

Figure 8.2 shows an example of load calculation for a set of three real-time
tasks.

230 C H A P T E R 8

8.3 PERFORMANCE METRICS
When a real-time system is underloaded and dynamic activation of tasks is
not allowed, there is no need to consider task importance in the scheduling
policy, since there exist optimal scheduling algorithms that can guarantee a
feasible schedule under a set of assumptions. For example, Dertouzos [Der74]
proved that EDF is an optimal algorithm for preemptive, independent tasks
when there is no overload.

On the contrary, when tasks can be activated dynamically and an overload
occurs, there are no algorithms that can guarantee a feasible schedule of the task
set. Since one or more tasks will miss their deadlines, it is preferable that late
tasks be the less important ones in order to achieve graceful degradation. Hence,
in overload conditions, distinguishing between time constraints and importance
is crucial for the system. In general, the importance of a task is not related
to its deadline or its period; thus, a task with a long deadline could be much
more important than another one with an earlier deadline. For example, in
a chemical process, monitoring the temperature every ten seconds is certainly
more important than updating the clock picture on the user console every
second. This means that, during a transient overload, is better to skip one or
more clock updates rather than miss the deadline of a temperature reading,
since this could have a major impact on the controlled environment.

In order to specify importance, an additional parameter is usually associated
with each task, its value, that can be used by the system to make scheduling
decisions.

The value associated with a task reflects its importance with respect to the other
tasks in the set. The specific assignment depends on the particular application.
For instance, there are situations in which the value is set equal to the task
computation time; in other cases, it is an arbitrary integer number in a given
range; in other applications, it is set equal to the ratio of an arbitrary number
(which reflects the importance of the task) and the task computation time; this
ratio is referred to as the value density.

In a real-time system, however, the actual value of a task also depends on the
time at which the task is completed; hence, the task importance can be better
described by an utility function. Figure 8.3 illustrates some utility functions
that can be associated with tasks in order to describe their importance. Accord
ing to this view, a non-real-time task, which has no time constraints, has a low
constant value, since it always contributes to the system value whenever it com-

Handling Overload Conditions 231

v(fi)

Non real-time

• ^ f i

Figure 8.3
importance.

Utility functions that can be associated to a task to describe its

pletes its execution. On the contrary, a hard task contributes to a value only
if it completes within its deadline, and, since a deadline miss would jeopardize
the behavior of the whole system, the value after its deadline can be considered
minus infinity in many situations. A task with a soft deadline, instead, can still
give a value to the system if executed after its deadline, although this value
may decrease with time. Then, there can be real-time activities, so-called firm,
that do not jeopardize the system but give zero value if completed after their
deadline.

Once the importance of each task has been defined, the performance of a
scheduling algorithm can be measured by accumulating the values of the task
utility functions computed at their completion time. Specifically, we define as
cumulative value of a scheduling algorithm A the following quantity:

n

i=l

Given this metric, a scheduling algorithm is optimal if it maximizes the cumu
lative value achievable on a task set.

Notice that if a hard task misses its deadline, the cumulative value achieved by
the algorithm is minus infinity, even though all other tasks completed before
their deadlines. For this reason, all activities with hard timing constraints
should be guaranteed a priori by assigning them dedicated resources (included

232 C H A P T E R 8

processors). If all hard tasks are guaranteed a priori, the objective of a real-time
scheduling algorithm should be to guarantee a feasible schedule in underload
conditions and maximize the cumulative value of soft and firm tasks during
transient overloads.

Given a set of n jobs Ji{Ci,Di,Vi), where Ci is the worst-case computation
time, Di is the relative deadline, and Vi is the importance value gained by the
system when the task completes within its deadline, the maximum cumulative
value achievable on the task set is clearly equal to the sum of all values Vi;
that is, Tmax = Yl7=i ^i' ^^ overload conditions, this value cannot be achieved,
since one or more tasks will miss their deadlines. Hence, if F* is the maxi
mum cumulative value that can be achieved by any algorithm on a task set in
overload conditions, the performance of a scheduling algorithm A can be mea
sured by comparing the cumulative value FA obtained by A with the maximum
achievable value F*.

8.3.1 On-line versus clairvoyant scheduling

Since dynamic environments require on-line scheduling, it is important to an
alyze the properties and the performance of on-line scheduling algorithms in
overload conditions.

Although there are optimal on-line algorithms in underload conditions, it is
easy to show that no optimal on-line algorithms exist in overloads. Consider for
example the task set shown in Figure 8.4, consisting of three tasks Ji(10,11,10),
J2(6,7,6), J3(6,7,6).

Without loss of generality, we assume that the importance values associated to
the tasks are proportional to their execution times (Vi = d) and that tasks
are firm, so no value is accumulated if a task completes after its deadline. If Ji
and J2 simultaneously arrive at time Q̂ = 0, there is no way to maximize the
cumulative value without knowing the arrival time of J3. In fact, if J3 arrives
at time t — A ox before, the maximum cumulative value is F* = 10 and can
be achieved by scheduling task Ji (see Figure 8.4a). However, if J3 arrives
between time ^ = 5 and time t = 8, the maximum cumulative value is F* = 12,
achieved by scheduling task J2 and J3, and discarding Ji (see Figure 8.4b).
Notice that if J3 arrives at time ^ = 9 or later (see Figure 8.4c), then the
maximum cumulative value is F* = 16 and can be accumulated by scheduling
tasks Ji and J3. Hence, at time t = 0, without knowing the arrival time of

Handling Overload Conditions 233

Jl

J3

c , = 10

I C 3 = 6

0 2 4 6

C, = 10

10 12 14 16

(a)

C. =6

J l

J3
C^ =6

•-f •! ' I - T ^'l'"'H

0 2 4 6 10 12 14 16

(b)

I C | = 10

J2

J3

C . =6

C ^ , ^ 6 ^ l

0 2 4 6 10 12 14 16

(C)

Figure 8.4 No optimal on-line optimal algorithms exist in overload condi
tions, since the schedule that maximizes F depends on the knowledge of future
arrivals, a. Tmax = 10. b . Tmax = 12. c. Tmax = 16.

234 C H A P T E R 8

J3, no on-line algorithm can decide which task to schedule for maximizing the
cumulative value.

What this example shows is that, without an a priori knowledge of the task
arrival times, no on-line algorithm can guarantee the maximum cumulative
value r*. This value can only be achieved by an ideal clairvoyant scheduling
algorithm that knows the future arrival time of any task. Although the optimal
clairvoyant scheduler is a pure theoretical abstraction, it can be used as a
reference model to evaluate the performance of on-line scheduling algorithms
in overload conditions.

8.3.2 Competit ive factor

The cumulative value obtained by a scheduling algorithm on a task set repre
sents a measure of its performance for that particular task set. To characterize
an algorithm with respect to worst-case conditions, however, the minimum cu
mulative value that can be achieved by the algorithm on any task set should
be computed. A parameter that measures the worst-case performance of a
scheduling algorithm is the competitive factor, introduced by Baruah et al. in
[BKM+92].

Definition 8.1 A scheduling algorithm A has a competitive factor (^A if Q^'^d
only if it can guarantee a cumulative value

TA > ^AT^

where F* is the cumulative value achieved by the optimal clairvoyant scheduler.

From this definition, we can notice that the competitive factor is a real number
(fA ^ [O?!]- If ^^ algorithm A has a competitive factor (^A^ it means that
A can achieve a cumulative value TA at least (^A times the cumulative value
achievable by the optimal clairvoyant scheduler on any task set.

If the overload has an infinite duration, then no on-line algorithm can guarantee
a competitive factor greater than zero. In real situations, however, overloads
are intermittent and usually have a short duration; hence, it is desirable to use
scheduling algorithms with a high competitive factor.

Unfortunately, without any form of guarantee, the plain EDF algorithm has a
zero competitive factor. To show this fact it is sufficient to find an overload

Handling Overload Conditions 235

J i

J2

V, = K

V2 = e K

Figure 8.5 Situation in which EDF has an arbitrarily small competitive fac
tor.

situation in which the cumulative value obtained by EDF can be arbitrarily
reduced with respect to that one achieved by the clairvoyant scheduler. Con
sider the example shown in Figure 8.5, where tasks have a value proportional
to their computation time. This is an overload condition because both tasks
cannot be completed within their deadlines.

When task J2 arrives, EDF preempts Ji in favor of J2, which has an earlier
deadline, so it gains a cumulative value of C2. On the other hand, the clair
voyant scheduler always gains Ci > C2. Since the ratio C2/C1 can be made
arbitrarily small, it follows that the competitive factor of EDF is zero.

An important theoretical result found in [BKM"^92] is that there exists an
upper bound on the competitive factor of any on-line algorithm. This is stated
by the following theorem.

Theorem 8.1 (Baruah at al.) In systems where the loading factor is greater
than 2 (p > 2) and tasks' values are proportional to their computation times,
no on-line algorithm can guarantee a competitive factor greater than 0.25.

The proof of this theorem is done by using an adversary argument, in which
the on-line scheduling algorithm is identified as a player and the clairvoyant
scheduler as the adversary. In order to propose worst-case conditions, the
adversary dynamically generates the sequence of tasks depending on the player
decisions, to minimize the ratio F A / F * . At the end of the game, the adversary
shows its schedule and the two cumulative values are computed. Since the
player tries to do his best in worst-case conditions, the ratio of the cumulative
values gives the upper bound of the competitive factor for any on-line algorithm.

236 C H A P T E R 8

Major J
Tasks

Associated
Tasks <

Ci

l e i
fz\ Tel Tel . . .

e Te Te

F i g u r e 8 . 6 Tcisk sequence g e n e r a t e d by t h e adve r sa ry .

Task generation strategy

To create an overload condition and force the hand of the player, the adversary
creates two types of tasks: major tasks, of length Cj, and associated tasks, of
length 6 arbitrarily small. These tasks are generated according to the following
strategy (see Figure 8.6):

• All tasks have zero laxity; that is, the relative deadline of each task is
exactly equal to its computation time.

• After releasing a major task Jj, the adversary releases the next major task
Ji^i at time e before the deadline of Ji; that is, r^+i = di — e.

• For each major task Jj, the adversary may also create a sequence of asso
ciated tasks, in the interval [n, di], such that each subsequent associated
task is released at the deadline of the previous one in the sequence (see
Figure 8.6). Note that the resulting load is p = 2. Moreover, any algorithm
that schedules any one of the associated tasks cannot schedule Ji within
its deadline.

• If the player chooses to abandon Ji in favor of an associated task, the
adversary stops the sequence of associated tasks.

• If the player chooses to schedule a major task J^, the sequence of tasks
terminates with the release of Ji-^i.

• Since the overload must have a finite duration, the sequence continues until
the release of Jm, where m is a positive finite integer.

Notice that the sequence of tasks generated by the adversary is constructed in
such a way that the player can schedule at most one task within its deadline

Handling Overload Conditions 237

(either a major task or an associated task). Clearly, since task values are equal
to their computation times, the player never abandons a major task for an
associated task, since it would accumulate a negligible value; that is, e. On the
other hand, the values of the major tasks (that is, their computation times) are
chosen by the adversary to minimize the resulting competitive factor. To find
the worst-case sequence of values for the major tasks, let

^0-) ^1-) ^2f • ' • •) '^ii ' ' • •) 'Jm

be the longest sequence of major tasks that can be generated by the adversary
and, without loss of generality, assume that the first task has a computation
time equal to Co = 1. Now, consider the following three cases.

Case 0. If the player decides to schedule JQ, the sequence terminates with
J i . In this case, the cumulative value gained by the player is Co, whereas the
one obtained by the adversary is (Co -h Ci — e). Notice that this value can be
accumulated by the adversary either by executing all the associated tasks, or
by executing JQ and all associated tasks started after the release of J i . Being e
arbitrarily small, it can be neglected in the cumulative value. Hence, the ratio
among the two cumulative values is

"̂ ^ Co + Ci 1 + Ci k'

If l//c is the value of this ratio (A: > 0), then C\ = k — 1.

Case 1. If the player decides to schedule J i , the sequence terminates with J2.
In this case, the cumulative value gained by the player is Ci, whereas the one
obtained by the adversary is (Co + Ci + C2). Hence, the ratio among the two
cumulative values is

- Ci _ A;-1
"̂ ^ ~ Co -f Ci + C2 ~ /c + C2 *

In order not to lose with respect to the previous case, the adversary has to
choose the value of C2 so that ipi < (po', that is,

k-1 1
k + C2 - k'

which means
C2 > k^ - 2k.

However, observe that, if (pi < (fo, the execution of JQ would be more convenient
for the player, thus the adversary decides to make (pi = (po; that is,

Co - k^-2k.

238 C H A P T E R 8

Case i. If the player decides to schedule Ji, the sequence terminates with J^+i.
In this case, the cumulative value gained by the player is Ci, whereas the one
obtained by the adversary is (Co + Ci 4- . . . + Ci^\). Hence, the ratio among
the two cumulative values is

Ci

Y.i=:0 ^3 + ^»+l

As in the previous case, to prevent any advantage to the player, the adversary
will choose tasks' values so that

1

Thus,

and hence

ifi = (pi^i = ... = ifo = - .

C^
Yl]=oCj +Ci^i k'

j=0

Thus, the worst-case sequence for the player occurs when major tasks are gen
erated with the following computation times:

^° : ^ i (8.1)
Ci-i-i — kCi — z2j=o ^3-

Proof of the hound

Whenever the player chooses to schedule a task Jj, the sequence stops with
Jij^i and the ratio of the cumulative values is

Ci ^ 1

Ej=0 ^3 + C'i+i ^

However, if the player chooses to schedule the last task J^ , the ratio of the
cumulative values is

Cm

ET=oCj-

Handling Overload Conditions 239

Notice that if k and m can be chosen such that i^^rn < 1/^; that is,

r 1
< 7, (8.2) Em ^ 7 '

then we can conclude that, in the worst case, a player cannot achieve a cumu
lative value greater than 1/k times the adversary's value. Notice that

^j=0 ^3 Sjlo ^3 + Cm YJjLo Cj -f- kCm-l " S j l o ^3 ^^m-1

Hence, if there exists an m which satisfies equation (8.2), it also satisfies the
following equation:

^ m ^ ^ m —1 •

(8.3)

Thus, (8.3) is satisfied if and only if (8.2) is satisfied.
From (8.1) we can also write

Ci-\-2 — kCi-^i — 2_^ Cj
3=0

i

Ci-i-i = kCi — y ^Cj,

i=o

and subtracting the second equation from the first one, we obtain

Ci-\-2 — C'i-f 1 = kyCi^i — Ci) — CiJ^i

that is,
Ci-\-2 — kyCij^i — Ci).

Hence, equation (8.1) is equivalent to

f Co = 1
^ Ci ^ k-l (8.4)
y Ci^2 = k{Ci^i - Ci).

From this result, we can say that the tightest bound on the competitive factor
of an on-line algorithm is given by the smallest ratio 1/k (equivalently, the
largest k) such that (8.4) satisfies (8.3). Equation (8.4) is a recurrence relation
that can be solved by standard techniques [Sha85]. The characteristic equation
of (8.4) is

x"^ - kx + k = 0,

240 C H A P T E R 8

which has roots

k + Vk'^- 4A: , k-Vk'^ - 4k
xi = and X2 = .

2 2

When A; = 4, we have
d = dii2'-{-d22\ (8.5)

and when k ^ 4 we have

Ci - diixiY + d2{x2)\ (8.6)

where values for di and ^2 can be found from the boundary conditions expressed
in (8.4). We now show that for {k = 4) and {k > 4) Ci will diverge, so equation
(8.3) will not be satisfied, whereas for {k < 4) Ci will satisfy (8.3).

Case (k = 4). In this case, Ci = d\i2'^ 4- G?22* and, from the boundary condi
tions, we find di — 0.5 and d2 — I. Thus,

Ci = (^ + 1)2S

which clearly diverges. Hence, for A; == 4, equation (8.3) cannot be satisfied.

Case (/c > 4). In this case, Ci = di{xiy -h d2{x2)\ where

k + Vk'^ - 4k , k-Vk^ - 4k
xi = and X2 = •

2 2
From the boundary conditions we find

J Co = di -\- d2 = I
\ Ci = diXi-\-d2X2 = k — 1

that is.
fc-2

^1 ~" 2 "^ 2v/fc2-4fc
r1 — i _ fc-2
^2 - 2 2 > A ^ ^ ^ -

Since (xi > 0:2), (a:i > 2), and (di > 0), Cj will diverge, and hence, also for
A: > 4, equation (8.3) cannot be satisfied.

Case {k < 4). In this case, since (/ĉ —4k < 0), both the roots xi , X2 and
the coefficients di, ^2 are complex conjugates, so they can be represented as
follows:

^ Xi = re^ (di = se^' r
{ d2 = se-^^ \ X2 = re •̂ ,̂

Handling Overload Conditions 241

where s and r are real numbers, j = \ / ^ , and 0 and LO are angles such that,
—7r/2 < ^ < 0 , 0 < u ; < 7r/2. Equation (8.6) may therefore be rewritten as

= 5r*[cos(^ + icc;) + j sin(^ H-icj) + cos(^ + icj) — jsin(^ + zo;)] =
= 2sr^ cos{6 -{- iuj).

Being UJ ^ 0, cos{6 + ioo) is negative for some i G N, which implies that there
exists a finite m that satisfies (8.3).

Since (8.3) is satisfied for A: < 4, the largest k that determines the competi
tive factor of an on-line algorithm is certainly less than 4. Therefore, we can
conclude that 1/4 is an upper bound on the competitive factor that can be
achieved by any on-line scheduling algorithm in an overloaded environment.
Hence, Theorem 8.1 follows.

Extensions

Theorem 8.1 establishes an upper bound on the competitive factor of on-line
scheduling algorithms operating in heavy load conditions (p > 2). In lighter
overload conditions (1 < p < 2), the bound is a little higher, and it is given by
the following theorem [BR91].

Theorem 8.2 (Baruah et al.) In real-time environments with a loading fac
tor p, 1 < p <2, and task values equal to computation times, no on-line algo
rithm can guarantee a competitive factor greater than p, where p satisfies

4 [l - (p - l) p f = 2 7 / . (8.7)

Notice that, for p = 1 -h e, equation (8.7) is satisfied for p = y/4:/27 c::̂ 0.385,
whereas, for p = 2, the same equation is satisfied for p = 0.25.

In summary, whenever the system load does not exceed one, the upper bound
of the competitive factor is obviously one. As the load exceeds one, the bound
immediately falls to 0.385, and as the load increases from one to two, it falls
from 0.385 to 0.25. For loads higher than two, the competitive factor limitation
remains at 0.25. The bound on the competitive factor as a function of the load
is shown in Figure 8.7.

242 C H A P T E R 8

1

0.75H

0.5-

0.25-

load

Figure 8.7 Bound of the competitive factor of an on-line scheduling algo
rithm as a function of the load.

Baruah et al. [BR91] also showed that, when using value density metrics (where
the value density of a task is its value divided by its computation time), the
best that an on-line algorithm can guarantee in environments with load p > 2
is

1

where k is the important ratio between the highest and the lowest value density
task in the system.

In environments with a loading factor p, 1 < p < 2, and an importance ratio
/c, two cases must be considered. Let q = k{p - 1). U q > 1, then no on-hne
algorithm can achieve a competitive factor greater than

1

27p\

whereas, if q < 1, no on-line algorithm can achieve a competitive factor greater
than p, where p satisfies

4(1 - qpf =

Before concluding the discussion on the competitive analysis, it is worth point
ing out that all the above bounds are derived under very restrictive assump
tions, such as all tasks have zero laxity, the overload can have an arbitrary (but
finite) duration, and task's execution time can be arbitrarily small. In most
real-world applications, however, tasks characteristics are much less restrictive;
therefore, the l /4th bound has only a theoretical validity, and more work is
needed to derive other bounds based on more knowledge of the actual envi
ronmental load conditions. An analysis of on-line scheduling algorithms under
diff'erent types of adversaries has been presented by Karp in [Kar92].

Handling Overload Conditions 243

8.4 SCHEDULING SCHEMES FOR
OVERLOAD

With respect to the strategy used to predict and handle overloads, most of the
scheduling algorithms proposed in the literature can be divided into three main
classes, illustrated in Figure 8.8:

• Best Effort. This class includes those algorithms with no prediction for
overload conditions. At its arrival, a new task is always accepted into the
ready queue, so the system performance can only be controlled through a
proper priority assignment.

• Guarantee. This class includes those algorithms in which the load on the
processor is controlled by an acceptance test executed at each task arrival.
Typically, whenever a new task enters the system, a guarantee routine
verifies the schedulability of the task set based on worst-case assumptions.
If the task set is found schedulable, the new task is accepted in the ready
queue; otherwise, it is rejected.

• Robust. This class includes those algorithms that separate timing con
straints and importance by considering two different policies: one for task
acceptance and one for task rejection. Typically, whenever a new task en
ters the system, an acceptance test verifies the schedulability of the new
task set based on worst-case assumptions. If the task set is found schedu
lable, the new task is accepted in the ready queue; otherwise, one or more
tasks are rejected based on a different policy.

In addition, an algorithm is said to be competitive if it has a competitive factor
greater than zero.

Notice that the simple guarantee scheme is able to avoid domino effects by
sacrificing the execution of the newly arrived task. Basically, the acceptance
test acts as a filter that controls the load on the system and always keeps
it less than one. Once a task is accepted, the algorithm guarantees that it
will complete by its deadline (assuming that no task will exceed its estimated
worst-case computation time). Guarantee algorithms, however, do not take
task importance into account and, during transient overloads, always reject
the newly arrived task, regardless of its value. In certain conditions (such
as when tasks have very different importance levels), this scheduling strategy
may exhibit poor performance in terms of cumulative value, whereas a robust
algorithm can be much more effective.

244 CHAPTER 8

In guarantee and robust algorithms, a reclaiming mechanism can be used to take
advantage of those tasks that complete before their worst-case finishing time.
To reclaim the spare time, rejected tasks will not be removed but temporarily
parked in a queue, from which they can be possibly recovered whenever a task
completes before its worst-case finishing time.

In the following sections we present a few examples of scheduling algorithms for
handling overload situations and then compare their performance for different
peak load conditions.

task
always accepted

Ready queue M RUN

(a)

task
Guarantee

Routine

accepted

rejected
(b)

Ready queue M RUN

task —

reclaiming
policy

» Planning

scheduling
policy

reject queue

Ready queue

rejection
policy

-fc(T?TIM

(c)

F i g u r e 8.8 Scheduling schemes for handling overload situations, a. Best
Effort, b . Guarantee, c. Robust.

Handling Overload Conditions 245

8.4.1 The RED algorithm

RED (Robust Earliest Deadline) is a robust scheduling algorithm proposed by
Buttazzo and Stankovic [BS93, BS95] for dealing with firm aperiodic tasks in
overloaded environments. The algorithm synergistically combines many fea
tures including graceful degradation in overloads, deadline tolerance, and re
source reclaiming. It operates in normal and overload conditions with excellent
performance, and it is able to predict not only deadline misses but also the size
of the overload, its duration, and its overall impact on the system.

In RED, each task Ji{Ci,Di,Mi,Vi) is characterized by four parameters: a
worst-case execution time (Cj), a relative deadline {Di), a deadline tolerance
(Mi), and an importance value {Vi). The deadline tolerance is the amount
of time by which a task is permitted to be late; that is, the amount of time
that a task may execute after its deadline and still produce a valid result.
This parameter can be useful in many real applications, such as robotics and
multimedia systems, where the deadline timing semantics is more flexible than
scheduling theory generally permits.

Deadline tolerances also provide a sort of compensation for the pessimistic
evaluation of the worst-case execution time. For example, without tolerance,
we could find that a task set is not feasibly schedulable and hence decide to
reject a task. But, in reality, the system could have been scheduled within
the tolerance levels. Another positive effect of tolerance is that various tasks
could actually finish before their worst-case times, so a resource reclaiming
mechanism could then compensate, and the tasks with tolerance could actually
finish on time.

In RED, the primary deadline plus the deadline tolerance provides a sort of
secondary deadline, used to run the acceptance test in overload conditions.
Notice that having a tolerance greater than zero is different than having a
longer deadline. In fact, tasks are scheduled based on their primary deadline
but accepted based on their secondary deadline. In this framework, a schedule
is said to be strictly feasible if all tasks complete before their primary deadline,
whereas is said to be tolerant if there exists some task that executes after its
primary deadline but completes within its secondary deadline.

The guarantee test performed in RED is formulated in terms of residual laxity.
The residual laxity Li of a task is defined as the interval between its estimated
finishing time (/i) and its primary (absolute) deadline {di). Each residual laxity
can be efficiently computed using the result of the following lemma.

246 C H A P T E R 8

Lemma 8.1 Given a set J = {Ji, J25 • • •, «/n} of active aperiodic tasks ordered
by increasing primary (absolute) deadline, the residual laxity Li of each task Ji
at time t can be computed as

Li = Li_i + {di - di-i) - Ci{t), (8.8)

where LQ = 0, do =^ t (that is, the current time), and Ci{t) is the remaining
worst-case computation time of task Ji at time t.

Proof. By definition, a residual laxity is Li = di — fi. Since tasks in the
set J are ordered by increasing deadlines, task Ji is executing at time t, and
its estimated finishing time is given by the current time plus its remaining
execution time (/i = t -\- ci). As a consequence, Li is given by

Li = di - fi — di - t - ci.

Any other task Jj, with z > 1, will start as soon as Ji_i completes and will
finish Ci units of time after its start {fi = fi-i + Ci). Hence, we have

Li = di - fi = di - fi-i - Ci = di - {di-i - Li-i) - d —

= Li-i + {di - di-i) - Ci,

and the lemma follows. D

Notice that if the current task set J is schedulable and a new arrives
at time t, the feasibility test for the new task set J' — J U {Ja} requires to
compute only the residual laxity of task Ja and that one of those tasks Ji such
that di > da. This is because the execution of Ja does not influence those tasks
having deadline less than or equal to da, which are scheduled before Ja- It
follows that, the acceptance test has 0{n) complexity in the worst case.

To simplify the description of the RED guarantee test, we define the Exceeding
time Ei as the time that task Ji executes after its secondary deadline:^

Ei = max(0,- (Li-f MO). (8.9)

We also define the Maximum Exceeding Time Emax t̂s the maximum among
all Ei's in the tasks set; that is, Emax — ina,Xi{Ei). Clearly, a schedule will be
strictly feasible if and only if Lj > 0 for all tasks in the set, whereas it will be
tolerant if and only if there exists some L^ < 0, but Emax = 0.

^If Mi = 0, the Exceeding Time is also called the Tardiness.

Handling Overload Conditions 247

By this approach we can identify which tasks will miss their deadlines and
compute the amount of processing time required above the capacity of the
system - the maximum exceeding time. This global view allows to plan an
action to recover from the overload condition. Many recovering strategies can
be used to solve this problem. The simplest one is to reject the least-value task
that can remove the overload situation. In general, we assume that, whenever
an overload is detected, some rejection policy will search for a subset J* of
least-value tasks that will be rejected to maximize the cumulative value of the
remaining subset. The RED acceptance test is shown in Figure 8.9.

RED_acceptance_test (J, Jneiu) {

E = 0; /* Maximum Exceeding Time */

do = current-time 0\

J = J U \Jnew)'-)

k = <position of Jnew in the task set J ' > ;

for each task J^ such that i > k do {

/* compute the maximum exceeding time */
Li = Li-i -h {di - di-i) - Ci\

if {Li-\-Mi < -E) then E =-{Li-\-Mi);

}

if {E>0) {

<select a set J* of least-value tasks to be rejected>;
<reject all task in J*>;

}

F i g u r e 8.9 The RED acceptance test.

In RED, a resource reclaiming mechanism is used to take advantage of those
tasks that complete before their worst-case finishing time. To reclaim the spare
time, rejected tasks are not removed forever but temporarily parked in a queue,
called Reject Queue^ ordered by decreasing values. Whenever a running task

248 C H A P T E R 8

completes its execution before its worst-case finishing time, the algorithm tries
to reaccept the highest-value tasks in the Reject Queue having positive laxity.
Tasks with negative laxity are removed from the system.

8.4.2 Dover* a competitive algorithm

Koren and Shasha [KS92] found an on-line scheduling algorithm, called i^^^^^,
which has been proved to be optimal, in the sense that it gives the best com
petitive factor achievable by any on-line algorithm (that is, 0.25).

As long as no overload is detected, D^^^'^ behaves like EDF. An overload is
detected when a ready task reaches its Latest Start Time (LST); that is, the
time at which the task's remaining computation time is equal to the time
remaining until its deadline. At this time, some task must be abandoned:
either the task that reached its LST or some other task. In Doven the set
of ready tasks is partitioned in two disjoint sets: privileged tasks and waiting
tasks. Whenever a task is preempted it becomes a privileged task. However,
whenever some task is scheduled as the result of a LST, all the ready tasks
(whether preempted or never executed) become waiting tasks.

When an overload is detected because a task Jz reaches its LST, then the
value of Jz is compared against the total value Vpriv of all the privileged tasks
(including the value Vcurr of the currently running task). If

i;^ > (1 -h \/k){Vcurr + Vpriv)

(where k is ratio of the highest value density and the lowest value density
task in the system), then Jz is executed; otherwise, it is abandoned. If Jz is
executed, all the privileged tasks become waiting tasks. Task Jz can in turn
be abandoned in favor of another task Jx that reaches its LST, but only if
Vj, > (1 -\-y/k)vz.

It worth to observe that having the best competitive factor among all on-line
algorithms does not mean having the best performance in any load condition. In
fact, in order to guarantee the best competitive factor, D^^^^ may reject tasks
with values higher than the current task but not higher than the threshold
that guarantees optimality. In other words, to cope with worst-case sequences,
jjover ^Qgg ĵ Q^ |.̂ ĵ g advantage of lucky sequences and may reject more value
than it is necessary. In Section 8.5, the performance of Dover is tested for
random task sets and compared with the one of other scheduling algorithms.

Handling Overload Conditions 249

8.5 PERFORMANCE EVALUATION

In this section, the performance of the scheduhng algorithms described above is
tested through simulation using a synthetic workload. Each plot on the graphs
represents the average of a set of 100 independent simulations, the duration
of each is chosen to be 300,000 time units long. The algorithms are executed
on task sets consisting of 100 aperiodic tasks, whose parameters are generated
as follows. The worst-case execution time Ci is chosen as a random variable
with uniform distribution between 50 and 350 time units. The interarrival time
Ti is modeled as a random variable with a Poisson distribution with average
value equal to Ti = NCi/p^ where Â is the total number of tasks and p is
the average load. The laxity of a task is computed as a random value with
uniform distribution from 150 and 1850 time units, and the relative deadline is
computed as the sum of its worst-case execution time and its laxity. The task
value is generated as a random variable with uniform distribution ranging from
150 to 1850 time units, as for the laxity.

The first experiment illustrates the effectiveness of the guarantee and robust
scheduling paradigm with respect to the best-effort scheme, under the EDF
priority assignment. In particular, it shows how the pessimistic assumptions
made in the guarantee test affect the performance of the algorithms and how
much a reclaiming mechanism can compensate for this degradation. In order
to test these effects, tasks were generated with actual execution times less than
their worst-case values. The specific parameter varied in the simulations was
the average Unused Computation Time Ratio, defined as

_ Actual Computation Time

Worst-Case Computation Time

Note that, if pn is the nominal load estimated based on the worst-case compu
tation times, the actual load p is given by

P = pn{l-P).

In the graphs reported in Figure 8.10, the task set was generated with a nominal
load pn = 3, while /? was varied from 0.125 to 0.875. As a consequence, the
actual mean load changed from a value of 2.635 to a value of 0.375, thus ranging
over very different actual load conditions. The performance was measured by
computing the Hit Value Ratio (HVR)\ that is, the ratio of the cumulative value
achieved by an algorithm and the total value of the task set. Hence, HVR — 1
means that all the tasks completed within their deadlines and no tasks were
rejected.

250 C H A P T E R 8

Nominal load = 3

0.7 h

o
« 0.6

0.5

0.4

0.3

0.2

0.1

[•

r ^^

+''

-

- B'''

I - --

RED -^—
GED -+--
EDF -0--

.cr'

.cr''

I

• T

,a''

i _ .

^,^''

_,•'

_ 1

, - K ' '

B

1

, , ! » ' ' '

1

1

^ , 4 ' '

, . ,+- ' ' '

1

,- +

-̂

J

H

0.3 0.4 0.5 0.6 0.7
Average unused computation time ratio (beta)

Figure 8.10 Performance of various EDF scheduling schemes: best-effort
(EDF), guarantee (GED) and robust (RED).

For small values of ^, that is, when tasks execute for almost their maximum
computation time, the guarantee (GED) and robust (RED) versions are able to
obtain a significant improvement compared to the plain EDF scheme. Increas
ing the unused computation time, however, the actual load falls down and the
plain EDF performs better and better, reaching the optimality in underload
conditions. Notice that as the system becomes underloaded (/? :^ 0.7) GED
becomes less effective than EDF. This is due to the fact that GED performs a
worst-case analysis, thus rejecting tasks that still have some chance to execute
within their deadline. This phenomenon does not appear on RED, because the
reclaiming mechanism implemented in the robust scheme is able to recover the
rejected tasks whenever possible.

In the second experiment, Dover is compared against two robust algorithms:
RED (Robust Earliest Deadline) and RHD (Robust High Density). In RHD,
the task with the highest value density {vi/Ci) is scheduled first, regardless of
its deadline. Performance results are shown in Figure 8.11.

Handling Overload Conditions 251

Figure 8.11 Performance of Dover against RED and RHD.

Notice that in underload conditions Dover and RED exhibit optimal behavior
{HVR = 1), whereas RHD is not able to achieve the total cumulative value,
since it does not take deadlines into account. However, for high load conditions
(p > 1.5), RHD performs even better than RED and Dover-

In particular, for random task sets, Dover is less effective than RED and RHD
for two reasons: first, it does not have a reclaiming mechanism for recovering
rejected tasks in the case of early completions; second, the threshold value used
in the rejection policy is set to reach the best competitive factor in a worst-case
scenario. But this means that for random sequences Dover naay reject tasks that
could increase the cumulative value, if executed.

In conclusion, we can say that in overload conditions no on-line algorithm can
achieve optimal performance in terms of cumulative value. Competitive algo
rithms are designed to guarantee a minimum performance in any load condition,
but they cannot guarantee the best performance for all possible scenarios. For
random task sets, robust scheduling schemes appear to be more appropriate.

