
9
KERNEL DESIGN ISSUES

In this chapter we present some basic issues that should be considered during
the design and the development of a hard real-time kernel for critical control
applications. For didactical purposes, we illustrate the structure and the main
components of a small real-time kernel, called DICK (D/dactic C /l^ernel),
mostly written in C language, which is able to handle periodic and aperiodic
tasks with explicit time constraints. The problem of time predictable intertask
communication is also discussed, and a particular communication mechanism
for exchanging state messages among periodic tasks is illustrated. Finally, we
show how the runtime overhead of the kernel can be evaluated and taken into
account in the schedulability analysis.

9.1 STRUCTURE OF A REAL-TIME
KERNEL

A kernel represents the innermost part of any operating system that is in di­
rect connection with the hardware of the physical machine. A kernel usually
provides the following basic activities:

Process management,

Interrupt handling, and

Process synchronization.

254 C H A P T E R 9

Process management is the primary service that an operating system has to
provide. It includes various supporting functions, such as process creation and
termination, job scheduUng, dispatching, context switching, and other related
activities.

The objective of the interrupt handling mechanism is to provide service to the
interrupt requests that may be generated by any peripheral device, such as
the keyboard, serial ports, analog-to-digital converters, or any specific sensor
interface. The service provided by the kernel to an interrupt request consists
in the execution of a dedicated routine (driver) that will transfer data from
the device to the main memory (or viceversa). In classical operating systems,
application tasks can always be preempted by drivers, at any time. In real­
time systems, however, this approach may introduce unpredictable delays in
the execution of critical tasks, causing some hard deadline to be missed. For
this reason, in a real-time system, the interrupt handling mechanism has to be
integrated with the scheduling mechanism, so that a driver can be scheduled
as any other task in the system and a guarantee of feasibility can be achieved
even in the presence of interrupt requests.

Another important role of the kernel is to provide a basic mechanism for sup­
porting process synchronization and communication. In classical operating
systems this is done by semaphores, which represent an efficient solution to the
problem of synchronization, as well as to the one of mutual exclusion. As dis­
cussed in Chapter 7, however, semaphores are prone to priority inversion, which
introduces unbounded blocking on tasks' execution and prevents a guarantee
for hard real-time tasks. As a consequence, in order to achieve predictability,
a real-time kernel has to provide special types of semaphores that support a
resource access protocol (such as Priority Inheritance, Priority Ceiling, or Stack
Resource Policy) for avoiding unbounded priority inversion. Other kernel ac­
tivities involve the initialization of internal data structures (such as queues,
tables, task control blocks, global variables, semaphores, and so on) and spe­
cific services to higher levels of the operating system.

In the rest of this chapter, we describe the structure of a small real-time kernel,
called DICK (D/dactic C /kernel). Rather than showing all implementation
details, we focus on the main features and mechanisms that are necessary to
handle tasks with explicit time constraints.

DICK is designed under the assumption that all tasks are resident in main
memory when it receives control of the processor. This is not a restrictive
assumption, as this is the typical solution adopted in kernels for real-time em­
bedded applications.

Kernel Design Issues 255

Service layer S

Processor J

management 1

List management <

Machine layer J

(assembly code)]

creation
termination

communication
synchronization

utility
services

scheduling ; dispatching

list management

context
switch

interrupt
handling

timer
handling

}

>

system calls

kernel

mechanisms

Figure 9.1 Hierarchical structure of DICK.

The various functions developed in DICK are organized according to the hi­
erarchical structure illustrated in Figure 9.1. Those low-level activities that
directly interact with the physical machine are realized in assembly language.
Nevertheless, for the sake of clarity, all kernel activities are described in pseudo
C.

The structure of DICK can be logically divided into four layers:

Machine layer. This layer directly interacts with the hardware of the
physical machine; hence, it is written in assembly language. The primitives
realized at this level mainly deal with activities such as context switch,
interrupt handling, and timer handling. These primitives are not visible
at the user level.

List management layer. To keep track of the status of the various tasks,
the kernel has to manage a number of lists, where tasks having the same
state are enqueued. This layer provides the basic primitives for inserting
and removing a task to and from a list.

Processor management layer. The mechanisms developed in this layer
only concerns scheduling and dispatching operations.

Service layer. This layer provides all services visible at the user level as a
set of system calls. Typical services concern task creation, task abortion,
suspension of periodic instances, activation and suspension of aperiodic
instances, and system inquiry operations.

256 C H A P T E R 9

9.2 PROCESS STATES

In this section, we describe the possible states in which a task can be during
its execution and how a transition from a state to another can be performed.

In any kernel that supports the execution of concurrent activities on a single
processor, where semaphores are used for synchronization and mutual exclusion,
there are at least three states in which a task can enter:

Running. A task enters this state as it starts executing on the processor.

Ready. This is the state of those tasks that are ready to execute but
cannot be executed because the processor is assigned to another task. All
tasks that are in this condition are maintained in a queue, called the ready
queue.

Waiting. A task enters this state when it executes a synchronization
primitive to wait for an event. When using semaphores, this operation is a
wait primitive on a locked semaphore. In this case, the task is inserted in a
queue associated with the semaphore. The task at the head of this queue
is resumed when the semaphore is unlocked by another task that executed
a signal on that semaphore. When a task is resumed, it is inserted in the
ready queue.

In a real-time kernel that supports the execution of periodic tasks, another state
must be considered, the IDLE state. A periodic job enters this state when it
completes its execution and has to wait for the beginning of the next period.
In order to be awakened by the timer, a periodic job must notify the end of its
cycle by executing a specific system call, end-cycle, which puts the job in the
IDLE state and assigns the processor to another ready job. At the right time,
each periodic job in the IDLE state will be awakened by the kernel and inserted
in the ready queue. This operation is carried out by a routine activated by a
timer, which verifies, at each tick, whether some job has to be awakened. The
state transition diagram relative to the four states described above is shown in
Figure 9.2.

Additional states can be introduced by other kernel services. For example, a
delay primitive, which suspends a job for a given interval of time, puts the job
in a sleeping state (DELAY), until it will be awakened by the timer after the
elapsed interval.

Kernel Design Issues 257

wait

activate / ^ >c ""^r \ terminate
READY) (RUN

end_cycle

TIMER

F i g u r e 9.2 Minimum state transition diagram of a real-time kernel.

Another state, found in many operating systems, is the RECEIVE state, in­
troduced by the classical message passing mechanism. A job enters this state
when it executes a receive primitive on an empty channel. The job exits this
state when a send primitive is executed by another job on the same channel.

In real-time systems that support dynamic creation and termination of hard
periodic tasks, a new state needs to be introduced for preserving the bandwidth
assigned to the guaranteed tasks. This problem arises because, when a periodic
task Tk is aborted (for example, with a kill operation), its utilization factor Uk
cannot be immediately subtracted from the total processor load, since the task
could already have delayed the execution of other tasks. In order to keep the
guarantee test consistent, the utilization factor Uk can be subtracted only at
the end of the current period of Tk.

For example, consider the set of three periodic tasks illustrated in Figure 9.3,
which are scheduled by the Rate-Monotonic algorithm. Computation times
are 1, 4, and 4, and periods are 4, 8, and 16, respectively. Since periods are
harmonic and the total utilization factor is U = 1, the task set is schedulable
by RM (remember that Uiub = 1 when periods are harmonic).

Now suppose that task r2 (with utilization factor U2 = 0.5) is aborted at
time t = 4 and that, at the same time, a new task Tnew, having the same
characteristics of r2, is created. If the total load of the processor is decremented
by 0.5 at time t = 4, task Tnew would be guaranteed, having the same utilization
factor as T2. However, as shown in Figure 9.4, T3 would miss its deadline. This
happens because the effects of T2 execution on the schedule protract until the
end of each period.

258 C H A P T E R 9

-^1

^2

^3

Hi H H • _

-1 1 1 ^ r

0 2 4 6
"1— '—r
10 12

J-
14 16

Figure 9.3 Feasible schedule of three periodic tasks under RM.

^ 2 killed

t l

•-2

1:3

(

L\

1

) 2

L
\ | '̂ new

H 1

1 ' 1
4 6

L
"1 n

L
I

^ B H ^
1 ' f~T™n
8 10 2

1

14

L
••

•

^ / time overflow

' 1 • 1 • 1 • 1

6 18 20 22 24

Figure 9.4 The effects of T2 do not cancel at the time it is aborted, but
protract till the end of its period.

As a consequence, to keep the guarantee test consistent, the utihzation factor
of an aborted task can be subtracted from the total load only at the end of the
current period. In the interval of time between the abort operation and the
end of its period, T2 is said to be in a ZOMBIE state, since it does not exist in
the system, but it continues to occupy processor bandwidth. Figure 9.5 shows
that the task set is schedulable when the activation of Tnew is delayed until the
end of the current period of T2.

A more complete state transition diagram including the states described above
(DELAY, RECEIVE, and ZOMBIE) is illustrated in Figure 9.6. Notice that,
at the end of its last period, a periodic task (aborted or terminated) leaves the
system completely and all its data structures are deallocated.

Kernel Design Issues 259

"̂ 2 killed

-Tl L \ L L L L L
zombie

XI

1 ' r
2 4 6

JH

- , 1 1 . 1 . 1 r 1 i 1 r

10 12 14 16 18 20 22 24

Figure 9.5 The new task set is schedulable when Tnew is activated at the
end of the period of T2.

activate

TIMER

Figure 9.6 State transition diagram including RECEIVE, DELAY, and
ZOMBIE states.

260 C H A P T E R 9

create

activate

(SLEEP)

/ s igna l

READY y _ _

resume ̂ ^-^>^^

^ ^

^(WAIT \

dispatching

preemption

wait ^
\ sleep

RUN

J end_cy(

termmate
' ZOMBIE

FREE

IDLE

TIMER

F i g u r e 9.7 State transition diagram in DICK.

In order to simplify the description of DICK, in the rest of this chapter we
describe only the essential functions of the kernel. In particular, the message
passing mechanism and the delay primitive are not considered here; as a con­
sequence, the states RECEIVE and DELAY are not present. However, these
services can easily be developed on top of the kernel, as an additional layer of
the operating system.

In DICK, activation and suspension of aperiodic tasks are handled by two
primitives, activate and sleep^ which introduce another state, called SLEEP.
An aperiodic task enters the SLEEP state by executing the sleep primitive. A
task exits the SLEEP state and goes to the READY state only when an explicit
activation is performed by another task.

Task creation and activation are separated in DICK. The creation primitive
{create) allocates and initializes all data structures needed by the kernel to
handle the task; however, the task is not inserted in the ready queue, but it
is left in the SLEEP state, until an explicit activation is performed. This is
mainly done for reducing the runtime overhead of the activation primitive. The
state transition diagram used in DICK is illustrated in Figure 9.7.

Kernel Design Issues 261

9.3 DATA STRUCTURES

In any operating system, the information about a task are stored in a data
structure, the Task Control Block (TCB). In particular, a TCB contains all the
parameters specified by the programmer at creation time, plus other temporary
information necessary to the kernel for managing the task. In a real-time
system, the typical fields of a TCB are shown in Figure 9.8 and contain the
following information:

An identifier; that is, a character string used by the system to refer the
task in messages to the user;

The memory address corresponding to the first instruction of the task;

The task type (periodic, aperiodic, or sporadic);

The task criticalness (hard, soft, or non-real-time);

The priority (or value), which represents the importance of the task with
respect to the other tasks of the application;

The current state (ready, running, idle, waiting, and so on);

The worst-case execution time;

The task period;

The relative deadline, specified by the user;

The absolute deadline, computed by the kernel at the arrival time;

The task utilization factor (only for periodic tasks);

A pointer to the process stack, where the context is stored;

A pointer to a directed acyclic graph, if there are precedence constraints;

A pointer to a list of shared resources, if a resource access protocol is
provided by the kernel.

In addition, other fields can be necessary for specific features of the kernel. For
example, if aperiodic tasks are handled by one or more server mechanisms, a
field can be used to store the identifier of the server associated with the task;
or, if the scheduling mechanism supports tolerant deadlines, a field can store
the tolerance value for that task.

262 C H A P T E R 9

Task Control Block

task identifier

task address

task type

criticalness

priority

state

computation time

period

relative deadline

absolute deadline

utilization factor

context pointer

precedence pointer

resource pointer

pointer to the next TCB

Figure 9.8 Structure of the Task Control Block.

Finally, since a TCB has to be inserted in the lists handled by the kernel, an
additional field has to be reserved for the pointer to the next element of the
list.

In DICK, a TCB is an element of the vdes [MAXPROC] array, whose size is equal
to the maximum number of tasks handled by the kernel. Using this approach,
each TCB can be identified by a unique index, corresponding to its position
in the vdes array. Hence, any queue of tasks can be accessed by an integer
variable containing the index of the TCB at the head of the queue. Figure 9.9
shows a possible configuration of the ready queue within the vdes array.

Similarly, the information concerning a semaphore is stored in a Semaphore
Control Block (SCB), which contains at least the following three fields (see
also Figure 9.10):

Kernel Design Issues 263

vdes

ready 0

1

2

3

4

5

6

7

Figure 9.9 Implementation of the ready queue as a list of Task Control
Blocks.

Semaphore Control Block

counter

semaphore queue

pointer to the next SCB

Figure 9.10 Semaphore Control Block.

A counter, which represents the value of the semaphore;

A queue, for enqueueing the tasks blocked on the semaphore;

A pointer to the next SCB, to form a list of free semaphores.

Each SCB is an element of the vsem[MAXSEM] array, whose size is equal to
the maximum number of semaphores handled by the kernel. According to this
approach, tasks, semaphores, and queues can be accessed by an integer number,
which represents the index of the corresponding control block. For the sake of
clarity, however, tasks, semaphores and queues are defined as three different
types.

264 CHAPTER 9

typedef int

typedef int

typedef int

typedef int

typedef char*

queue;

sem;

proc;

cab;

pointer;

/* head index

/* semaphore index

/* process index

/* cab buffer index

/* memory pointer

*/

*/

*/

*/

*/

struct tcb

char

proc

int

int

long

int

int

int

float

int

proc

proc

};

{
name[MAXLEN+l];

(*addr)();

type;

state;

dline;

period;

prt;

wcet;

util;

•context;

next;

prev;

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

task name

first instruction address

task type

task state

absolute deadline

task period

task priority

worst-case execution time

task utilization factor

pointer to the context

pointer to the next tcb

pointer to previous tcb

*/

*/

*/

*/

*/

•/

*/

•/

*/

*/

*/

*/

Struct scb {

int count;

queue qsem;

sem next;

};

/* semaphore counter

/* semaphore queue

/* pointer to the next

*/
*/
*/

struct tcb

struct scb

vdes[MAXPROC] ;

vsem[MAXSEM];

/* tcb array */

/* scb array */

Kernel Design Issues 265

proc

queue

queue

queue

queue

queue

float

pexe;

ready;

idle;

zombie;

freetcb;

freesem;

util_fact;

/* task in execution

/* ready queue

/* idle queue

/* zombie queue

/* queue of free tcb's

/* queue of free semaphores

/* utilization factor

*/

*/

*/

*/

*/
*/

*/

9.4 MISCELLANEOUS

9.4.1 Time management

To generate a time reference, a timer circuit is programmed to interrupt the
processor at a fixed rate, and the internal system time is represented by an
integer variable, which is reset at system initialization and is incremented at
each timer interrupt. The interval of time with which the timer is programmed
to interrupt defines the unit of time in the system; that is, the minimum interval
of time handled by the kernel (time resolution). The unit of time in the system
is also called a system tick.

In DICK, the system time is represented by a long integer variable, called
sys_clock, whereas the value of the tick is stored in a float variable called
time_unit. At any time, sys_clock contains the number of interrupts gener­
ated by the timer since system initialization.

unsigned long

float

sys_clock;

time_unit;

/* system time */

/* unit of time (ms) */

If Q denotes the system tick and n is the value stored in sys_clock, the actual
time elapsed since system initialization is i = nQ. The maximum time that can
be represented in the kernel (the system lifetime) depends on the value of the
system tick. Considering that sys_clock is an unsigned long represented on 32
bits. Table 9.1 shows the values of the system lifetime for some tick values.

266 C H A P T E R 9

tick

1 ms
5 ms
10 ms
50 ms

lifetime
50 days

8 months
16 months

7 years

T a b l e 9.1 System lifetime for some typical tick values.

The value to be assigned to the tick depends on the specific appHcation. In
general, small values of the tick improve system responsiveness and allow to
handle periodic activities with high activation rates. On the other hand, a
very small tick causes a large runtime overhead due to the timer handling
routine and reduces the system lifetime. Typical values used for the time
resolution can vary from 1 to 50 milliseconds. To have a strict control on task
deadlines and periodic activations, all time parameters specified on the tasks
should be multiple of the system tick. If the tick can be selected by the user,
the best possible tick value is equal to the greatest common divisor of all the
task periods.

The timer interrupt handling routine has a crucial role in a real-time system.
Other than updating the value of the internal time, it has to check for possible
deadline misses on hard tasks, due to some incorrect prediction on the worst-
case execution times. Other activities that can be carried out by the timer
interrupt handling routine concern lifetime monitoring, activation of periodic
tasks that are in idle state, awakening tasks suspended by a delay primitive,
checking for deadlock conditions, and terminating tasks in zombie state.

In DICK, the timer interrupt handling routine increments the value of the
sys_clock variable, checks the system lifetime, checks for possible deadline
misses on hard tasks, awakes idle periodic tasks at the beginning of their next
period and, at their deadlines, deallocates all data structures of the tasks in
zombie state. In particular, at each timer interrupt, the corresponding handling
routine

Saves the context of the task in execution;

Increments the system time;

Kernel Design Issues 267

If the current time is greater than the system Ufetime, generates a timing
error;

If the current time is greater than some hard deadUne, generates a time-
overflow error;

Awakens those idle tasks, if any, that have to begin a new period;

If at least a task has been awakened, calls the scheduler;

Removes all zombie tasks for which their deadline is expired;

Loads the context of the current task;

Returns from interrupt.

The runtime overhead introduced by the execution the timer routine is pro­
portional to its interrupt rate. In Section 9.7 we see how this overhead can be
evaluated and taken into account in the schedulability analysis.

9.4.2 Task classes and scheduling algorithm

Real-world control applications usually consist of computational activities hav­
ing different characteristics. For example, tasks may be periodic, aperiodic,
time-driven, and event-driven and may have different levels of criticalness. To
simplify the description of the kernel, only two classes of tasks are considered
in DICK:

HARD tasks, having a critical deadline, and

Non-real-time (NRT) tasks, having a fixed priority.

HARD tasks can be activated periodically or aperiodically depending on how
an instance is terminated. If the instance is terminated with the primitive
end-cycle, the task is put in the idle state and automatically activated by the
timer at the beginning of its next period; if the instance is terminated with the
primitive end-aperiodic, the task is put in the sleep state, from where it can
be resumed only by explicit activation. HARD tasks are scheduled using the
Earliest Deadline First (EDF) algorithm, whereas NRT tasks are executed in
background based on their priority.

268 C H A P T E R 9

max priority

0
min priority

255

^ MAXDLINE - 255 MAXDLINE

Figure 9.11 Mapping NRT priorities into deadlines.

In order to integrate the scheduling of these classes of tasks and avoid the use of
two scheduling queues, priorities of NRT tasks are transformed into deadlines
so that they are always greater than HARD deadlines. The rule for mapping
NRT priorities into deadlines is shown in Figure 9.11 and is such that

^NRT ^ MAXDLINE - PRT.LEV -\- Pi,

where MAXDLINE is the maximum value of the variable sys_clock (2^^ — 1),
PRT_LEV is the number of priority levels handled by the kernel, and Pi is the
priority of the task, in the range [0, PRT_LEV-1] (0 being the highest priority).
Such a priority mapping slightly reduces system lifetime but greatly simplifies
task management and queue operations.

9.4.3 Global constants

In order to clarify the description of the source code, a number of global
constants are defined here. Typically, they define the maximum size of the
main kernel data structures, such as the maximum number of processes and
semaphores, the maximum length of a process name, the number of priority lev­
els, the maximum deadline, and so on. Other global constants encode process
classes, states, and error messages. They are listed below:

#define

#define

#define

#define

#define

#define

#define

#define

#define

MAXLEN

MAXPROC

MAXSEM

MAXDLINE

PRT_LEV

NIL

TRUE

FALSE

LIFETIME

12

32

32

OxTFFFFFFF

255

-1

1

0

MAXDLINE -

/*

/*

/*

/*

/*

/*

PRT_LEV

max string length

max number of tasks

max No of semaphores

max deadline

priority levels

null pointer

*/

*/

*/

*/

*/

*/

Kernel Design Issues 269

/* ->- /
/ ^
/*
/*

\ / ^
#define

#define

/*
/ *
/ *
/* ~ -
/ *
#define

#define

#define

#define

#define

#define

#define

HARD

NRT

FREE

READY

EXE

SLEEP

IDLE

WAIT

ZOMBIE

1

2

0

1

2

3

4

5

6

Task types

/*

/*

Task states

/*

/*

/*

/*

/*

/*

/*

critical task

non real-time task

TCB not allocated

ready state

running state

sleep state

idle state

wait state

zombie state

T /

* /
3k /

*/
*/

*/

3k /

*/
*/
3k /

*/
*/

*/

*/

*/

*/

*/

*/

/* - -
/*

/*
#define

#define

#define

#define

#define

#define

OK

TIME_OVERFLOW

TIME_EXPIRED

NO-GUARANTEE

NO_TCB

NO_SEM

Error

0

1

2

3

4

5

messages

/*

/*

/*

/*

/*

/*

no error

missed deadline

lifetime reached

task not schedulable

too many tasks

too many semaphores

-*/

*/

-*/

*/

*/

*/

*/

*/

*/

9.4.4 Initialization

The real-time environment supported by DICK starts when the inLsystem
primitive is executed within a sequential C program. After this function is
executed, the main program becomes a NRT task in which new concurrent
tasks can be created.

270 C H A P T E R 9

The most important activities performed by inLsystem concern

• Initializing all queues in the kernel;

• Setting all interrupt vectors;

• Preparing the TCB associated with the main process;

• Setting the timer period to the system tick.

void ini_system(float t i ck)

{
proc i ;

time_unit = tick;

<enable the timer to interrupt every time_unit>

<initiali2e the interrupt vector table>

/* initialize the list of free TCBs and semaphores */

for (i=0; KMAXPROC-1; i++) vdes[i].next = i+1;

vdes[MAXPROC-l].next = NIL;

for (i=0; i<MAXSEM-l; i++) vsem[i].next = i+1;

vsem[MAXSEM-l].next = NIL;

ready = NIL;

idle = NIL;

zombie = NIL;

freetcb = 0;

freesem = 0;

util_fact = 0;

<initialize the TCB of the main process>

pexe = <main index>;

}

Kernel Design Issues 271

9.5 KERNEL PRIMITIVES

The structure of DICK is logically divided in a number of hierarchical layers, as
illustrated in Figure 9.1. The lowest layer includes all interrupt handling drivers
and the routines for saving and loading a task context. The next layer contains
the functions for list manipulation (insertion, extraction, and so on) and the
basic mechanisms for task management (dispatching and scheduling). All kernel
services visible from the user are implemented at a higher level. They concern
task creation, activation, suspension, termination, synchronization, and status
inquiry.

9.5.1 Low-level primitives

Basically, the low-level primitives implement the mechanism for saving and
loading the context of a task; that is, the values of the processor registers.

/jk «*- /

/ ^
/* save_context — of the task

/*
/ ^
void save_context(void)

{
int *pc;

<disable interrupts>

pc = vdes[pexe].context;

pc[0] = <register_0>

pc[l] = <register_l>

pc[2] = <register_2>

pc[n] = <registerji>

^

-r/

in execution */

- * /
^/

/* pointer to context of pexe */

/* save register 0 */

/* save register 1 */

/* save register 2 */

/* save register n */

272 C H A P T E R 9

/* - - -»- /
/*
/* load_context — of the task
/* - -^ -
/5K - - ~ -

void load_context(void)

{
int *pc;

pc = vdes[pexe].context;

<register_0> = pc[0];

<register_l> = pc[l] ;

<register_ii> = pc[n];

<return from interrupt>

}

T /

to be executed */
^1
^1

/^ pointer to context of pexe */

/* load register 0 */

/* load register 1 */

/* load register n */

9.5.2 List management

Since tasks are scheduled based on EDF, all queues in the kernel are ordered
by decreasing deadlines. In this way, the task with the earliest deadline can
be simply extracted from the head of a queue, whereas an insertion operation
requires to scan at most all elements of the list. All lists are implemented
with bidirectional pointers (next and prev). The insert function is called with
two parameters: the index of the task to be inserted and the pointer of the
queue. It uses two auxiliary pointers, p and g, whose meaning is illustrated in
Figure 9.12.

Kernel Design Issues 273

head index

1 J 1 p

^
\

4

first

NIL

new

•

*

< —
q

1 \
t
1

NIL

last

*

Figure 9.12 Inserting a TCB in a queue.

/*
/¥

/* insert — a task in a queue based on its deadline

/jk / 5»C

void insert (proc i, queue *que)

{
long dl; /* deadline of the task to be inserted

int p; /* pointer to the previous TCB

int q; /* pointer to the next TCB

p = NIL;

q = *que;

dl = vdes[i].dline;

/* find the element before the insertion point */

while ((q != NIL) && (dl >= vdes[q].dline)) {

p = q;
q = vdes[q].next;

}
if (p != NIL) vdes[p].next = i;

else *que = i;

if (q != NIL) vdes[q].prev = i;

vdes[i].next = q;

vdes[i].prev = p;

}

-* /
*/

-* /

*/
*/
*/

274 C H A P T E R 9

head
1

index

I '11
first

NIL

?

*
to

remove

= r
*

1

NIL

last

*

Figure 9.13 Extracting a TCB from a queue.

The major advantage of using bidirectional pointers is in the implementation
of the extraction operation, which can be realized in one step without scanning
the whole queue. Figure 9.13 illustrates the extraction of a generic element,
whereas Figure 9.14 shows the extraction of the element at the head of the
queue.

/* «»- /
/ *
/* e x t r a c t — a task from a queue
/*
/ *
proc ex t rac t (proc i , queue *que)

{
i n t P> q; /* a u x i l i a r y p o i n t e r s

p = v d e s [i] . p r e v ;

q = v d e s [i] . n e x t ;

if (p == NIL) *que = q; / * f i r s t element
e l s e vdes[p] .nex t = v d e s [i] . n e x t ;

if (q != NIL) vdes[q] .prev = v d e s [i] . p r e v ;

r e t u r n (i) ;

}

- r /

* /
3k /
5 K /

* /

* /

Kernel Design Issues 275

head

1—;
1

ndex

1
q 1

*
first

NIL * •

V

*
second

*

* •

NIL

last

Figure 9.14 Extracting the TCB at the head of a queue.

/* */

/* getfirst — extracts the task at the head of a queue */

/* */

proc getfirst (queue *que)

{
i n t q;

q = *que;

/* po in te r t o the f i r s t element */

i f (q == NIL) re turn(NIL) ;

•que = vdes [q] .nex t ;

vdes[*que] .prev = NIL;

r e t u r n (q) ;

Finally, to simplify the code reading of the next levels, two more functions
are defined: firstdline and empty. The former returns the deadline of the task
at the head of the queue, while the latter returns TRUE if a queue is empty,
FALSE otherwise.

276 C H A P T E R 9

/ • * /

/* firstdline — returns the deadline of the first task */
/* */

long firstdline (queue *que)

{
return(vdes[que].dline);

}

/* */

/* empty — returns TRUE if a queue is empty */
/* */

int empty (queue *que)

{
if (que == NIL)

return(TRUE);

else

return(FALSE);

}

9.5.3 Scheduling mechanism

The scheduling mechanism in DICK is reahzed through the functions schedule
and dispatch. The schedule primitive verifies whether the running task is the
one with the earhest deadhne. If so, no action is done, otherwise the running
task is inserted in the ready queue and the first ready task is dispatched. The
dispatch primitive just assigns the processor to the first ready task.

Kernel Design Issues 277

/* */
/* schedule — selects the task with the earliest deadline */
/* */

void schedule (void)

{
if (firstdline(ready) < vdesCpexe].dline) {

vdes[pexe].state = READY;

insert(pexe, feready);

dispatchO ;

}

/* */

/* dispatch — assigns the cpu to the first ready task */

/* */

void dispatch (void)

{
pexe = getfirst(&ready);

vdes[pexe].state = RUN;
}

The timer interrupt handling routine is called wake.up and performs the ac­
tivities described in Section 9.4.1. In summary, it increments the sys.clock
variable, checks for the system lifetime and possible deadline misses, removes
those tasks in zombie state whose deadlines are expired, and, finally, resumes
those periodic tasks in idle state at the beginning of their next period. Note,
that if at least a task has been resumed, the scheduler is invoked and a pre­
emption takes place.

278 CHAPTER 9

/* */

/* wake_up — timer interrupt handling routine */
/* */

void wake_up(void)

{
proc p;

int count = 0;

save_context() ;

sys_clock++;

if (sys.clock >= LIFETIME) abort (TIME_EXPIRED) ;

if (vdes[pexe].type == HARD)

if (sys_clock > vdes [pexe] .dline)

abort (TIME_OVERFLOW) ;

while ('empty(zombie) &&

(firstdline(zombie) <= sys_clock)) {

p = getfirst(fezombie);

util_fact = util_fact - vdes [p] .util;

vdes[p].state = FREE;

insert(p, &freetcb);

}
while (!empty(idle) && (firstdline(idle) <= sys_clock)) {

p = getfirst(feidle);

vdes[p].dline += (long)vdes[p].period;

vdes[p].state = READY;

insert(p, feready);

count++;

}
if (count > 0) s chedu leO;
load_context 0 ;

}

Kernel Design Issues 279

9.5.4 Task management

It concerns creation, activation, suspension, and termination of tasks. The
create primitive allocates and initializes all data structures needed by a task
and puts the task in SLEEP. A guarantee is performed for HARD tasks.

/*
\ / ^
/* create — creates a task and puts it in sleep state

/*
\ / ^
proc create(

char naine[MAXLEN+l] , /* task name

proc (*addr)(), /* task address

int type, /* type (HARD, NRT)

float period, /* period or priority

float wcet) /* execution time

{
proc p;

<disable cpu interrupts>

p = getfirst(&freetcb);

if (p == NIL) abort(NO_TCB);

if (vdesCp].type == HARD)

if (! guarantee (p)) return(NO_GUARANTEE) ;

vdesEp].name = name;

vdesEp].addr = addr;

vdes[p].type = type;

vdes[p].state = SLEEP;

vdes[p].period = (int)(period / time_unit);

vdesEp].wcet = (int)(wcet / time_unit);

vdes[p].util = wcet / period;

vdes[p].prt = (int)period;

vdesCp] .dline = MAXJLONG + (long) (period - PRT_LEV) ;

<initialize process stack>

<enable cpu interrupts>

return(p);

J

- * /

* /

- * /

* /
* /

* /

• /

* /

280 CHAPTER 9

/* */

/* guarantee — guarantees the feasibility of a hard task */
/• */

int guarantee (proc p)

{
util_fact = util_fact + vdes[p] .ut i l ;
if (util_fact > 1.0) {

util_fact = utiljfact - vdesCp] .ut i l ;
return(FALSE);

}
else return(TRUE);

The system call activate inserts a task in the ready queue, performing the
transition SLEEP-READY. If the task is HARD, its absolute deadline is set
equal to the current time plus its period. Then the scheduler is invoked to
select the task with the earliest deadline.

/ * - _ - _ - „ « - . s i , /

/ *
/* a c t i v a t e — i n s e r t s a t a sk in the ready queue
/* - - - -
/ *
i n t act ivate (proc p)

{
save_context 0 ;
if (vdes[p] . type == HARD)

v d e s [p] . d l i n e = sys_clock + (long)vdes [p] .per iod ;

I vdesCp] . s t a te = READY;
i n s e r t (p , feready);
schedule 0 ;
load_context() ;

}

- r /

*/
3k /
^/

Kernel Design Issues 281

The transition RUN-SLEEP is performed by the sleep system call. The running
task is suspended in the sleep state, and the first ready task is dispatched for
execution. Notice that this primitive acts on the calling task, which can be
periodic or aperiodic. For example, the sleep primitive can be used at the end
of a cycle to terminate an aperiodic instance.

/* */

/* sleep — suspends itself in a sleep state */
/* */

void sleep (void)

{
save_context 0 ;
vdesCp] . s ta te = SLEEP;
d i s p a t c h O ;
load_context 0 ;

The primitive for terminating a periodic instance is a bit more complex than
its aperiodic counterpart, since the kernel has to be informed on the time at
which the timer has to resume the job. This operation is performed by the
primitive end-cycle, which puts the running task into the idle queue. Since it is
assumed that deadlines are at the end of the periods, the next activation time
of any idle periodic instance coincides with its current absolute deadline.

In the particular case in which a periodic job finishes exactly at the end of its
period, the job is inserted not in the idle queue but directly in the ready queue,
and its deadline is set to the end of the next period.

282 CHAPTER 9

/* */

/* end_cycle — inserts a task in the idle queue */
/• */

void end_cycle(void)

{
long dl;

save_context 0 ;

dl = vdes[pexe].dline;

if (sys_clock < dl) {

vdes [pexe] . s t a t e = IDLE;
i n s e r t (p e x e , feidle);

}
else {

dl = dl + (long)vdes[pexe].period,•

vdes[p].dline = dl;

vdes[p].state = READY;

insert(pexe, feready);

}
dispatchO ;

load_context();

A typical example of periodic task is shown in the following code:

proc cycle 0

{
while (TRUE) {

<periodic code>
end_cycle() ;

}
}

Kernel Design Issues 283

There are two primitives for terminating a process: the first, called end-process,
directly operates on the calling task; the other one, called kill, terminates the
task passed as a formal parameter. Notice that, if the task is HARD, it is
not immediately removed from the system but put in ZOMBIE state. In this
case, the complete removal will be done by the timer routine at the end of the
current period:

/* */

/* end_process — terminates the running task */

/* */

void end_process(void)

{
<disable cpu interrupts>

if (vdesCpexe].type == HARD)

insert(pexe, fezombie);

else {

vdes[pexe].state = FREE;

insert(pexe, &freetcb);

}
dispatchO ;

load_context() ;

}

284 C H A P T E R 9

/ • * /

/* k i l l — terminates a task */
/* */

vo

{

id

<d:

if

}
if

if

if

kill (pro c p)

Lsable cpu interrupts>

(pexe == p) {
end_process() ;

return;

(vdes[p].

(vdes[p].

(vdes[p].

insert(p

else {

}
<er

vdes[p].

insert(p

lable cpu

state ==

state ==

type ==

), fezomb:

state =

= READY)

= IDLE)

HARD)

Le) ;

FREE;

), fefreetcb) ;

interrupts>

extract

extract
(P»
(P,

feready)

feidle);

9.5.5 Semaphores

In DICK, synchronization and mutual exclusion are handled by semaphores.
Four primitives are provided to the user to allocate a new semaphore (newsem),
deallocate a semaphore (delsem), wait for an event (wait), and signal an event
(signal).

The newsem primitive allocates a free semaphore control block and initial­
izes the counter field to the value passed as a parameter. For example, s i =
newsem(O) defines a semaphore for synchronization, whereas s2 = newsem(l)
defines a semaphore for mutual exclusion. The delsem primitive just deallocates
the semaphore control block, inserting it in the list of free semaphores.

Kernel Design Issues 285

1 /*-
/ *

/*-

sem

{
sem

}

newsem --- allocates and initializes a semaphore

newsem(int n)

s;

<disable cpu interrupts>

s = freesem;

if (s ==

freesem

vsem[s]

vsem[s]

<enable

return(s

= NIL) abort (NO_SEM)

= vsem[s] .next;

count = n;

qsem = NIL;

cpu interrupts>

0;

/* first free semaphore

)

/*

/*

/*

update the freesem

initialize counter

rie /

*/
*/

- Jk /

*/

index */

list

initialize sem. queue

*/

*/

*/

/ j l C _ _ „ _ U , /

/* delsem — deallocates a semaphore

/* - - - - -
/ JK - - - - -

void delsem(sem s)

{
<disable cpu interrupts>

vsem[s].next = freesem; /* inserts s at the head

freesem = s; /* of the freesem list

<enable cpu interrupts>

}

*/
9k /

*/

*/

•/

The wait primitive is used by a task to wait for an event associated to a
semaphore. If the semaphore counter is positive, it is decremented, and the
task continues its execution; if the counter is less than or equal to zero, the
task is blocked, and it is inserted in the semaphore queue. In this case, the first
ready task is assigned to the processor by the dispatch primitive.

286 C H A P T E R 9

To ensure the consistency of the kernel data structures, all semaphore system
calls are executed with cpu interrupts disabled. Notice that semaphore queues
are ordered by decreasing absolute deadlines, so that, when more tasks are
blocked, the first task awakened will be the one with the earliest deadline.

/* */

/* wait — waits for an event */

/* */

void wait(sem s)

{
<disable cpu interrupts>

if (vsem[s].count > 0) vsem[s].count — ;

else {

save.context () ;

vdes[pexe].state = WAIT;

insert(pexe, &vsem[s].qsem);

dispatchO ;

load-Context 0 ;

}
<enable cpu interrupts>

The signal primitive is used by a task to signal an event associated with a
semaphore. If no tasks are blocked on that semaphore (that is, if the semaphore
queue is empty), the counter is incremented, and the task continues its execu­
tion. If there are blocked tasks, the task with the earliest deadline is extracted
from the semaphore queue and is inserted in the ready queue. Since a task has
been awakened, a context switch may occur; hence, the context of the running
task is saved, a task is selected by the scheduler, and a new context is loaded.

Kernel Design Issues 287

/* */
/* signal — signals an event */
/* */

void signal(sem s)

{
proc p;

<disable cpu interrupts>

if (!empty(vsem[s].qsem)) {

p = getfirst(&vsem[s].qsem);

vdes[p].state = READY;

insert(p, feready);

save_context() ;

schedule 0;

load_context() ;
}

else vsem[s].count++;

<enable cpu interrupts>
}

It is worth observing that classical semaphores are prone to the priority inver­
sion phenomenon, which introduces unbounded delays during tasks' execution
and prevents any form of guarantee on hard tasks (this problem is discussed
in Chapter 7). As a consequence, this type of semaphores should be used only
by non-real-time tasks, for which no guarantee is performed. Real-time tasks,
instead, should rely on more predictable mechanisms, based on time-bounded
resource access protocols (such as Stack Resource Policy) or on asynchronous
communication buffers. In DICK, the communication among hard tasks occurs
through an asynchronous buffering mechanism, which is described in Section
9.6.

9.5.6 Status inquiry
DICK also provides some primitives for inquiring the kernel about internal
variables and task parameters. For example, the following primitives allow to
get the system time, the state, the deadline, and the period of a desired task.

288 C H A P T E R 9

/ • * /

/* get-time — returns the system time in milliseconds */
/• */

float get_time(void)

{
return (time .unit • sys_clock) ;

}

/* */
/ • get_state — returns the s ta te of a task */
/ • ^1

int get_state(proc p)

{
return(vdes[p] .s ta te) ;

}

/* '• */
/* get_dline — returns the deadline of a task */

/* */

long get_dline(proc p)

{
return(vdes[p].dline);

}

/* */
/* get_period — returns the period of a task */
/* */

float get_period(proc p)

{
return(vdes[p].period);

}

Kernel Design Issues 289

9.6 INTERTASK COMMUNICATION
MECHANISMS

Intertask communication is a critical issue in real-time systems, even in a
uniprocessor environment. In fact, the use of shared resources for implementing
message passing schemes may cause priority inversion and unbounded blocking
on tasks' execution. This would prevent any guarantee on the task set and
would lead to a highly unpredictable timing behavior.

In this section, we discuss problems and solutions related to the most typical
communication semantics used in operating systems: the synchronous and the
asynchronous model.

In the pure synchronous communication model, whenever two tasks want to
communicate they must be synchronized for a message transfer to take place.
This synchronization is called a rendez-vous. Thus, if the sender starts first,
it must wait until the recipient receives the message; on the other hand, if the
recipient starts first, it must wait until the sender produces its message.

In a dynamic real-time system, synchronous communication schemes easily lead
to unpredictable behavior, due to the difficulty of estimating the maximum
blocking time for a process rendez-vous. In a static real-time environment, the
problem can be solved off-line by transforming all synchronous interactions into
precedence constraints. According to this approach, each task is decomposed
into a number of subtasks that contain communication primitives not inside
their code but only at their boundary. In particular, each subtask can receive
messages only at the beginning of its execution and can send messages only at
the end. Then a precedence relation is imposed between all adjacent subtasks
deriving from the same father task and between all subtasks communicating
through a send-receive pair. An example of such a task decomposition is illus­
trated in Figure 9.15.

In a pure asynchronous scheme, communicating tasks do not have to wait for
each other. The sender just deposits its message into a channel and continues
its execution, independently of the recipient condition. Similarly, assuming
that at least a message has been deposited into the channel, the receiver can
directly access the message without synchronizing with the sender.

Asynchronous communication schemes are more suitable for dynamic real-time
systems. In fact, if no unbounded delays are introduced during tasks' commu­
nication, timing constraints can easily be guaranteed without increasing the

290 C H A P T E R 9

^\

m

send(mes, A)

=

.0.
-^2

\i
receive(mes. A)

subtask

T 1-a

send

^ 1

subtask

T 1-b

subtask

T2-a

^ V
receive

subtask

T2-b

(a) (b)

Figure 9.15 Decomposition of communicating tasks (a) into subtasks with
precedence constraints (b).

complexity of the system (for example, overconstraining the task set with addi­
tional precedence relations). Remember that having simple on-line guarantee
tests (that is, with polynomial time complexity) is crucial for dynamic systems.

In most commercial real-time operating systems, the asynchronous commu­
nication scheme is implemented through a mailbox mechanism, illustrated in
Figure 9.16. A mailbox is a shared memory buffer capable of containing a fixed
number of messages that are typically kept in a FIFO queue. The maximum
number of messages that at any instant can be held in a mailbox represents its
capacity.

Two basic operations are provided on a mailbox - namely, send and receive.
A send(MX, mes) operation causes the message mes to be inserted in the
queue of mailbox MX. If at least a message is contained on mailbox M X , a
receive (MX, mes) operation extracts the first message from its queue. Notice
that, if the kernel provides the necessary support, more than two tasks can
share a mailbox, and channels with multiple senders and/or multiple receivers
can be realized. As long as it is guaranteed that a mailbox is never empty and
never full, sender(s) and receiver(s) are never blocked.

Unfortunately, a mailbox provides only a partial solution to the problem of
asynchronous communication, since it has a bounded capacity. Unless sender
and receiver have particular arrival patterns, it is not possible to guarantee
that the mailbox queue is never empty or never full. If the queue is full, the
sender must be delayed until some message is received. If the queue is empty,
the receiver must wait until some message is inserted.

Kernel Design Issues 291

Mailbox

cy-^ I I I I n — o
Producer Consumer

F i g u r e 9.16 The mailbox scheme.

For example, consider two periodic tasks, TI and r2, with periods Ti and T2,
that exchange messages through a mailbox having a capacity of n. Let ri be the
sender and r2 the receiver. If Ti < T2, the sender inserts in the mailbox more
messages than the receiver can extract; thus, after a while the queue becomes
full and the sender must be delayed. From this time on, the sender has to wait
the receiver, so it synchronizes with its period (T2). Viceversa, if Ti > T2, the
receiver reads faster than the sender can write; thus, after a while the queue
becomes empty and the receiver must wait. From this time on, the receiver
synchronizes with the period of the sender (Ti). In conclusion, if Ti ^ T2,
sooner or later both tasks will run at the lowest rate, and the task with the
shortest period will miss its deadline.

An alternative approach to asynchronous communication is provided by acycli-
cal asynchronous buffers, which are described in the next section.

9.6.1 Cyclical asynchronous buffers

Cyclical Asynchronous Buffers, or CABs, represent a particular mechanism
purposely designed for the cooperation among periodic activities, such as con­
trol loops and sensory acquisition tasks. This approach was first proposed
by Clark [Cla89] for implementing a robotic application based on hierarchical
servo-loops, and it is used in the HARTIK system [But93, BD93] as a basic
communication support among periodic hard tasks.

A CAB provides a one-to-many communication channel, which at any instant
contains the latest message or data inserted in it. A message is not consumed
(that is, extracted) by a receiving process but is maintained into the CAB
structure until a new message is overwritten. As a consequence, once the first
message has been put in a CAB, a task can never be blocked during a receive
operation. Similarly, since a new message overwrites the old one, a sender can
never be blocked.

292 C H A P T E R 9

Notice that, using such a semantics, a message can be read more than once if
the receiver is faster than the sender, while messages can be lost if the sender
is faster than the receiver. However, this is not a problem in many control
applications, where tasks are interested only in fresh sensory data rather than
in the complete message history produced by a sensory acquisition task.

CABs can be created and initialized by the operi-cab primitive, which requires
specifying the CAB name, the dimension of the message, and the number of
messages that the CAB may contain simultaneously. The delete-cab primitive
removes a CAB from the system and releases the memory space used by the
buffers.

To insert a message in a CAB, a task must first reserve a buffer from the CAB
memory space, then copy the message into the buffer, and finally put the buffer
into the CAB structure, where it becomes the most recent message. This is
done according to the following scheme:

buf .po in te r = reserve(cab_id) ;

<copy message in *buf _pointer>

pu tmes (buf -po in te r , cab_id) ;

Similarly, to get a message from a CAB, a task has to get the pointer to the most
recent message, use the data, and release the pointer. This is done according
to the following scheme:

mes_pointer = getmes(cab_id) ;

<use message>

unget (mes .poin ter , cab_id) ;

Notice that more tasks can simultaneously access the same buffer in a CAB
for reading. On the other hand, if a task P reserves a CAB for writing while
another task Q is using that CAB, a new buffer is created, so that P can write its
message without interfering with Q. As P finishes writing, its message becomes
the most recent one in that CAB. The maximum number of buffers that can
be created in a CAB is specified as a parameter in the operi-cab primitive. To
avoid blocking, this number must be equal to the number of tasks that use the
CAB plus one.

Kernel Design Issues 293

9.6.2 CAB implementation

The data structure used to implement a CAB is shown in Figure 9.17. A
CAB control block must store the maximum number of buffers {max.buf}, their
dimension {dim.huf)^ a pointer to a list of free buffers {free), and a pointer to
the most recent buffer (mrb). Each buffer in the CAB can be implemented as
a data structure with three fields: a pointer (next) to maintain a list of free
buffers, a counter (use) that stores the current number of tasks accessing that
buffer, and a memory area (data) for storing the message.

The code of the four CAB primitives is shown below. Notice that the main
purpose of the putmes primitive is to update the pointer to the most recent
buffer (MRB). Before doing that, however, it deallocates the old MRB if no
tasks are accessing that buffer. Similarly, the unget primitive decrements the
number of tasks accessing that buffer and deallocates the buffer only if no task
is accessing it and it is not the MRB.

reading task

\j

free

mrb

max_buf

dim_buf

p

next

use

data

\ '
next

use

most
recent
buffer

]

4

'

use

empty

^ NIL
use

empty

F i g u r e 9.17 CAB data structure.

294 CHAPTER 9

/jk ^ 1
/ ^
/* reserve — reserves a buffer

/*
/ '•'
pointer reserve(cab c)

{
pointer p;

<disable cpu interrupts>

p = c.free;

c.free = p.next;

return(p);

<enable cpu interrupts>

}

in a CAB

/* get a free buffer

/* update the free list

'^1

*/
•it. /
*/

*/
*/

/*
/* putmes — puts a message in a CAB
/*

void putmes(cab c, pointer p)

{
<disable cpu interrupts>

if (c.mrb.use == 0) {

c.mrb.next = c.free;

c.free = c.mrb;

}
c.mrb = p;

<enable cpu interrupts>

/* update the mrb

-*/

*/

*>

/* if not accessed, */

/* deallocate the mrb */

*/

Kernel Design Issues 295

/ * Jk /
/ ̂ */
/* getmes — gets a pointer to the most recent buffer */

/ * - jk /
/* */
pointer getmes (cab c)

{
pointer p;

<disable cpu interrupts>

p = c.mrb; /* get the pointer to mrb */

p.use = p.use + 1 ; /* increment the counter */

return(p);

<enable cpu interrupts>

}

/*
/*
/* unget — deallocates a buffer only if it is not accessed

/* and it is not the most recent buffer

/* -
/*
void unget (cab c, pointer p)

{
<disable cpu interrupts>

p.use = p.use - 1;

if ((p.use == 0) && (p != c.mrb)) {

p.next = c.free;

c.free = p;

}
<enable cpu interrupts>

}

-* /
*/
*/

-* /

296 C H A P T E R 9

timer interrupts

Figure 9.18 Effects of the overhead on tasks' execution.

9.7 SYSTEM OVERHEAD

The overhead of an operating system represents the time used by the proces­
sor for handhng all kernel mechanisms, such as enqueueing tasks, performing
context switches, updating the internal data structures, sending messages to
communication channels, servicing the interrupt requests, and so on. The time
required to perform these operations is usually much smaller than the execution
times of the application tasks; hence, it can be neglected in the schedulability
analysis and in the resulting guarantee test. In some cases, however, when
application tasks have small execution times and tight timing constraints, the
activities performed by the kernel may not be so negligible and may create a
significant interference on tasks' execution. In these situations, predictability
can be achieved only by considering the effects of the runtime overhead in the
schedulability analysis.

The context switch time is one of the most significant overhead factors in any
operating system. It is an intrinsic limit of the kernel that does not depend
on the specific scheduling algorithm, nor on the structure of the application
tasks. For a real-time system, another important overhead factor is the time
needed by the processor to execute the timer interrupt handling routine. If Q
is the system tick (that is, the period of the interrupt requests from the timer)
and G is the worst-case execution time of the corresponding driver, the timer
overhead can be computed as the utilization factor Ut of an equivalent periodic
task:

Figure 9.18 illustrates the execution intervals (cr) due to the timer routine and
the execution intervals [5) necessary for a context switch. The eflPects of the
timer routine on the schedulability of a periodic task set can be taken into

Kernel Design Issues 297

Figure 9.19 Net utilization bound as a function of the tick value.

account by adding the factor Ut to the total utiHzation of the task set. This
is the same as reducing the least upper bound of the utilization factor Uiub by
Ut, so that the net bound becomes

Unet = Ulub — Ut = Uiub —
Q u. lub

Q - <ylUiub

Q

From this result we can notice that, to have Unet > 0, the system tick Q
must always be greater than {a/Uiub)- The plot of Unet as a function of Q
is illustrated in Figure 9.19. To have an idea of the degradation caused by
the timer overhead, consider a system based on the EDF algorithm {Uiub = 1)
and suppose that the timer interrupt handling routine has an execution time
of (J = 100/X5. In this system, a 10 ms tick would cause a net utilization bound
Unet = 0.99; a 1 ms tick would decrease the net utilization bound to Unet =0 .9 ;
whereas a 200fis tick would degrade the net bound to Unet = 0.5. This means
that, if the greatest common divisor among the task periods is 200/is, a task
set with utilization factor U = 0.6 cannot be guaranteed under this system.

The overhead due to other kernel mechanisms can be taken into account as
an additional term on tasks' execution times. In particular, the time needed
for explicit context switches (that is, the ones triggered by system calls) can
be considered in the execution time of the kernel primitives; thus, it will be
charged to the worst-case execution time of the calling task. Similarly, the
overhead associated with implicit context switches (that is, the ones triggered
by the kernel) can be charged to the preempted tasks.

298 CHAPTER 9

In this case, the schedulabiUty analysis requires a correct estimation of the total
number of preemptions that each task may experience. In general, for a given
scheduling algorithm, this number can be estimated off-line as a function of
tasks' timing constraints. If Ni is the maximum number of preemptions that
a periodic task TI may experience in each period, and 6 is the time needed to
perform a context switch, the total utilization factor (overhead included) of a
periodic task set can be computed as

i=l * i=l * \ 1=1 * /

Hence, we can write
Utot — Up + Uovi

where Up is the utilization factor of the periodic task set and Uov is a correction
factor that considers the effects of the timer handling routine and the preemp­
tion overhead due to intrinsic context switches (explicit context switches are
already considered in the C '̂s terms):

"" TV-

1 ^

Finally, notice that an upper bound for the number of preemptions Ni on a
task Ti can be computed as

A ^ ^ - E Tk
k=i •-

However, this bound is too pessimistic, and better bounds can be found for
particular scheduling algorithms.

9,7.1 Accounting for interrupt

Two basic approaches can be used to handle interrupts coming from external
devices. One method consists of associating an aperiodic or sporadic task to
each source of interrupt. This task is responsible for handling the device and
is subject to the scheduling algorithm as any other task in the system. With
this method, the cost for handling the interrupt is automatically taken in to
account by the guarantee mechanism, but the task may not start immediately,
due to the presence of higher-priority hard tasks. This method cannot be used
for those devices that require immediate service for avoiding data loss.

Kernel Design Issues 299

Another approach allows interrupt handling routines to preempt the current
task and execute immediately at the highest priority. This method minimizes
the interrupt latency, but the interrupt handling cost has to be explicitly con­
sidered in the guarantee of the hard tasks.

JefFay and Stone [JS93] found a schedulability condition for a set of n hard tasks
and m interrupt handlers. In their work, the analysis is carried out by assuming
a discrete time, with a resolution equal to a tick. As a consequence, every event
in the system occurs at a time that is multiple of the tick. In their model, there
is a set X of m handlers, characterized by a worst-case execution time C/^ and
a minimum separation time Tf^, just as sporadic tasks. The difference is that
interrupt handlers always have a priority higher than the application tasks.

The upper bound, / (/) , for the interrupt handling cost in any time interval of
length / can be computed by the following recurrent relation [JS93]:

ifEr=.[T7^1^," > / (' - !) (9.1)
otherwise.

In the particular case in which all the interrupt handlers start at time t = 0,
function /(/) is exactly equal to the amount of time spent by processor in
executing interrupt handlers in the interval [0,/].

Theorem 9.1 (JefFay-St one) A set T of n periodic or sporadic tasks and a
set X of m interrupt handlers is schedulahle by EDF if and only if for all L,
L>0,

^ ' c , < L-f{L). (9.2) E Ti

The proof of Theorem 9.1 is very similar to the one presented for Theorem 4.2.
The only difference is that, in any interval of length L, the amount of time
that the processor can dedicate to the execution of application tasks is equal
to L - / (L) .

It is worth to notice that equation (9.2) can be checked only for a set of points
equal to release times less than the hyperperiod, and the complexity of the
computation is pseudo-polynomial.

