
9 
KERNEL DESIGN ISSUES 

In this chapter we present some basic issues that should be considered during 
the design and the development of a hard real-time kernel for critical control 
applications. For didactical purposes, we illustrate the structure and the main 
components of a small real-time kernel, called DICK (D/dactic C /l^ernel), 
mostly written in C language, which is able to handle periodic and aperiodic 
tasks with explicit time constraints. The problem of time predictable intertask 
communication is also discussed, and a particular communication mechanism 
for exchanging state messages among periodic tasks is illustrated. Finally, we 
show how the runtime overhead of the kernel can be evaluated and taken into 
account in the schedulability analysis. 

9.1 STRUCTURE OF A REAL-TIME 
KERNEL 

A kernel represents the innermost part of any operating system that is in di­
rect connection with the hardware of the physical machine. A kernel usually 
provides the following basic activities: 

Process management, 

Interrupt handling, and 

Process synchronization. 
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Process management is the primary service that an operating system has to 
provide. It includes various supporting functions, such as process creation and 
termination, job scheduUng, dispatching, context switching, and other related 
activities. 

The objective of the interrupt handling mechanism is to provide service to the 
interrupt requests that may be generated by any peripheral device, such as 
the keyboard, serial ports, analog-to-digital converters, or any specific sensor 
interface. The service provided by the kernel to an interrupt request consists 
in the execution of a dedicated routine (driver) that will transfer data from 
the device to the main memory (or viceversa). In classical operating systems, 
application tasks can always be preempted by drivers, at any time. In real­
time systems, however, this approach may introduce unpredictable delays in 
the execution of critical tasks, causing some hard deadline to be missed. For 
this reason, in a real-time system, the interrupt handling mechanism has to be 
integrated with the scheduling mechanism, so that a driver can be scheduled 
as any other task in the system and a guarantee of feasibility can be achieved 
even in the presence of interrupt requests. 

Another important role of the kernel is to provide a basic mechanism for sup­
porting process synchronization and communication. In classical operating 
systems this is done by semaphores, which represent an efficient solution to the 
problem of synchronization, as well as to the one of mutual exclusion. As dis­
cussed in Chapter 7, however, semaphores are prone to priority inversion, which 
introduces unbounded blocking on tasks' execution and prevents a guarantee 
for hard real-time tasks. As a consequence, in order to achieve predictability, 
a real-time kernel has to provide special types of semaphores that support a 
resource access protocol (such as Priority Inheritance, Priority Ceiling, or Stack 
Resource Policy) for avoiding unbounded priority inversion. Other kernel ac­
tivities involve the initialization of internal data structures (such as queues, 
tables, task control blocks, global variables, semaphores, and so on) and spe­
cific services to higher levels of the operating system. 

In the rest of this chapter, we describe the structure of a small real-time kernel, 
called DICK (D/dactic C /kernel). Rather than showing all implementation 
details, we focus on the main features and mechanisms that are necessary to 
handle tasks with explicit time constraints. 

DICK is designed under the assumption that all tasks are resident in main 
memory when it receives control of the processor. This is not a restrictive 
assumption, as this is the typical solution adopted in kernels for real-time em­
bedded applications. 
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Figure 9.1 Hierarchical structure of DICK. 

The various functions developed in DICK are organized according to the hi­
erarchical structure illustrated in Figure 9.1. Those low-level activities that 
directly interact with the physical machine are realized in assembly language. 
Nevertheless, for the sake of clarity, all kernel activities are described in pseudo 
C. 

The structure of DICK can be logically divided into four layers: 

Machine layer. This layer directly interacts with the hardware of the 
physical machine; hence, it is written in assembly language. The primitives 
realized at this level mainly deal with activities such as context switch, 
interrupt handling, and timer handling. These primitives are not visible 
at the user level. 

List management layer. To keep track of the status of the various tasks, 
the kernel has to manage a number of lists, where tasks having the same 
state are enqueued. This layer provides the basic primitives for inserting 
and removing a task to and from a list. 

Processor management layer. The mechanisms developed in this layer 
only concerns scheduling and dispatching operations. 

Service layer. This layer provides all services visible at the user level as a 
set of system calls. Typical services concern task creation, task abortion, 
suspension of periodic instances, activation and suspension of aperiodic 
instances, and system inquiry operations. 
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9.2 PROCESS STATES 

In this section, we describe the possible states in which a task can be during 
its execution and how a transition from a state to another can be performed. 

In any kernel that supports the execution of concurrent activities on a single 
processor, where semaphores are used for synchronization and mutual exclusion, 
there are at least three states in which a task can enter: 

Running. A task enters this state as it starts executing on the processor. 

Ready. This is the state of those tasks that are ready to execute but 
cannot be executed because the processor is assigned to another task. All 
tasks that are in this condition are maintained in a queue, called the ready 
queue. 

Waiting. A task enters this state when it executes a synchronization 
primitive to wait for an event. When using semaphores, this operation is a 
wait primitive on a locked semaphore. In this case, the task is inserted in a 
queue associated with the semaphore. The task at the head of this queue 
is resumed when the semaphore is unlocked by another task that executed 
a signal on that semaphore. When a task is resumed, it is inserted in the 
ready queue. 

In a real-time kernel that supports the execution of periodic tasks, another state 
must be considered, the IDLE state. A periodic job enters this state when it 
completes its execution and has to wait for the beginning of the next period. 
In order to be awakened by the timer, a periodic job must notify the end of its 
cycle by executing a specific system call, end-cycle, which puts the job in the 
IDLE state and assigns the processor to another ready job. At the right time, 
each periodic job in the IDLE state will be awakened by the kernel and inserted 
in the ready queue. This operation is carried out by a routine activated by a 
timer, which verifies, at each tick, whether some job has to be awakened. The 
state transition diagram relative to the four states described above is shown in 
Figure 9.2. 

Additional states can be introduced by other kernel services. For example, a 
delay primitive, which suspends a job for a given interval of time, puts the job 
in a sleeping state (DELAY), until it will be awakened by the timer after the 
elapsed interval. 
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F i g u r e 9.2 Minimum state transition diagram of a real-time kernel. 

Another state, found in many operating systems, is the RECEIVE state, in­
troduced by the classical message passing mechanism. A job enters this state 
when it executes a receive primitive on an empty channel. The job exits this 
state when a send primitive is executed by another job on the same channel. 

In real-time systems that support dynamic creation and termination of hard 
periodic tasks, a new state needs to be introduced for preserving the bandwidth 
assigned to the guaranteed tasks. This problem arises because, when a periodic 
task Tk is aborted (for example, with a kill operation), its utilization factor Uk 
cannot be immediately subtracted from the total processor load, since the task 
could already have delayed the execution of other tasks. In order to keep the 
guarantee test consistent, the utilization factor Uk can be subtracted only at 
the end of the current period of Tk. 

For example, consider the set of three periodic tasks illustrated in Figure 9.3, 
which are scheduled by the Rate-Monotonic algorithm. Computation times 
are 1, 4, and 4, and periods are 4, 8, and 16, respectively. Since periods are 
harmonic and the total utilization factor is U = 1, the task set is schedulable 
by RM (remember that Uiub = 1 when periods are harmonic). 

Now suppose that task r2 (with utilization factor U2 = 0.5) is aborted at 
time t = 4 and that, at the same time, a new task Tnew, having the same 
characteristics of r2, is created. If the total load of the processor is decremented 
by 0.5 at time t = 4, task Tnew would be guaranteed, having the same utilization 
factor as T2. However, as shown in Figure 9.4, T3 would miss its deadline. This 
happens because the effects of T2 execution on the schedule protract until the 
end of each period. 
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Figure 9.3 Feasible schedule of three periodic tasks under RM. 
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Figure 9.4 The effects of T2 do not cancel at the time it is aborted, but 
protract till the end of its period. 

As a consequence, to keep the guarantee test consistent, the utihzation factor 
of an aborted task can be subtracted from the total load only at the end of the 
current period. In the interval of time between the abort operation and the 
end of its period, T2 is said to be in a ZOMBIE state, since it does not exist in 
the system, but it continues to occupy processor bandwidth. Figure 9.5 shows 
that the task set is schedulable when the activation of Tnew is delayed until the 
end of the current period of T2. 

A more complete state transition diagram including the states described above 
(DELAY, RECEIVE, and ZOMBIE) is illustrated in Figure 9.6. Notice that, 
at the end of its last period, a periodic task (aborted or terminated) leaves the 
system completely and all its data structures are deallocated. 
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Figure 9.5 The new task set is schedulable when Tnew is activated at the 
end of the period of T2. 
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Figure 9.6 State transition diagram including RECEIVE, DELAY, and 
ZOMBIE states. 
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F i g u r e 9.7 State transition diagram in DICK. 

In order to simplify the description of DICK, in the rest of this chapter we 
describe only the essential functions of the kernel. In particular, the message 
passing mechanism and the delay primitive are not considered here; as a con­
sequence, the states RECEIVE and DELAY are not present. However, these 
services can easily be developed on top of the kernel, as an additional layer of 
the operating system. 

In DICK, activation and suspension of aperiodic tasks are handled by two 
primitives, activate and sleep^ which introduce another state, called SLEEP. 
An aperiodic task enters the SLEEP state by executing the sleep primitive. A 
task exits the SLEEP state and goes to the READY state only when an explicit 
activation is performed by another task. 

Task creation and activation are separated in DICK. The creation primitive 
{create) allocates and initializes all data structures needed by the kernel to 
handle the task; however, the task is not inserted in the ready queue, but it 
is left in the SLEEP state, until an explicit activation is performed. This is 
mainly done for reducing the runtime overhead of the activation primitive. The 
state transition diagram used in DICK is illustrated in Figure 9.7. 



Kernel Design Issues 261 

9.3 DATA STRUCTURES 

In any operating system, the information about a task are stored in a data 
structure, the Task Control Block (TCB). In particular, a TCB contains all the 
parameters specified by the programmer at creation time, plus other temporary 
information necessary to the kernel for managing the task. In a real-time 
system, the typical fields of a TCB are shown in Figure 9.8 and contain the 
following information: 

An identifier; that is, a character string used by the system to refer the 
task in messages to the user; 

The memory address corresponding to the first instruction of the task; 

The task type (periodic, aperiodic, or sporadic); 

The task criticalness (hard, soft, or non-real-time); 

The priority (or value), which represents the importance of the task with 
respect to the other tasks of the application; 

The current state (ready, running, idle, waiting, and so on); 

The worst-case execution time; 

The task period; 

The relative deadline, specified by the user; 

The absolute deadline, computed by the kernel at the arrival time; 

The task utilization factor (only for periodic tasks); 

A pointer to the process stack, where the context is stored; 

A pointer to a directed acyclic graph, if there are precedence constraints; 

A pointer to a list of shared resources, if a resource access protocol is 
provided by the kernel. 

In addition, other fields can be necessary for specific features of the kernel. For 
example, if aperiodic tasks are handled by one or more server mechanisms, a 
field can be used to store the identifier of the server associated with the task; 
or, if the scheduling mechanism supports tolerant deadlines, a field can store 
the tolerance value for that task. 
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Figure 9.8 Structure of the Task Control Block. 

Finally, since a TCB has to be inserted in the lists handled by the kernel, an 
additional field has to be reserved for the pointer to the next element of the 
list. 

In DICK, a TCB is an element of the vdes [MAXPROC] array, whose size is equal 
to the maximum number of tasks handled by the kernel. Using this approach, 
each TCB can be identified by a unique index, corresponding to its position 
in the vdes array. Hence, any queue of tasks can be accessed by an integer 
variable containing the index of the TCB at the head of the queue. Figure 9.9 
shows a possible configuration of the ready queue within the vdes array. 

Similarly, the information concerning a semaphore is stored in a Semaphore 
Control Block (SCB), which contains at least the following three fields (see 
also Figure 9.10): 
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Figure 9.9 Implementation of the ready queue as a list of Task Control 
Blocks. 
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Figure 9.10 Semaphore Control Block. 

A counter, which represents the value of the semaphore; 

A queue, for enqueueing the tasks blocked on the semaphore; 

A pointer to the next SCB, to form a list of free semaphores. 

Each SCB is an element of the vsem[MAXSEM] array, whose size is equal to 
the maximum number of semaphores handled by the kernel. According to this 
approach, tasks, semaphores, and queues can be accessed by an integer number, 
which represents the index of the corresponding control block. For the sake of 
clarity, however, tasks, semaphores and queues are defined as three different 
types. 
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typedef int 

typedef int 

typedef int 

typedef int 

typedef char* 

queue; 

sem; 

proc; 

cab; 

pointer; 

/* head index 

/* semaphore index 

/* process index 

/* cab buffer index 

/* memory pointer 

*/ 

*/ 

*/ 

*/ 

*/ 

struct tcb 

char 

proc 

int 

int 

long 

int 

int 

int 

float 

int 

proc 

proc 

}; 

{ 
name[MAXLEN+l]; 

(*addr)(); 

type; 

state; 

dline; 

period; 

prt; 

wcet; 

util; 

•context; 

next; 

prev; 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

task name 

first instruction address 

task type 

task state 

absolute deadline 

task period 

task priority 

worst-case execution time 

task utilization factor 

pointer to the context 

pointer to the next tcb 

pointer to previous tcb 

*/ 

*/ 

*/ 

*/ 

*/ 

•/ 

*/ 

•/ 

*/ 

*/ 

*/ 

*/ 

Struct scb { 

int count; 

queue qsem; 

sem next; 

}; 

/* semaphore counter 

/* semaphore queue 

/* pointer to the next 

*/ 
*/ 
*/ 

struct tcb 

struct scb 

vdes[MAXPROC] ; 

vsem[MAXSEM]; 

/* tcb array */ 

/* scb array */ 
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proc 

queue 

queue 

queue 

queue 

queue 

float 

pexe; 

ready; 

idle; 

zombie; 

freetcb; 

freesem; 

util_fact; 

/* task in execution 

/* ready queue 

/* idle queue 

/* zombie queue 

/* queue of free tcb's 

/* queue of free semaphores 

/* utilization factor 

*/ 

*/ 

*/ 

*/ 

*/ 
*/ 

*/ 

9.4 MISCELLANEOUS 

9.4.1 Time management 

To generate a time reference, a timer circuit is programmed to interrupt the 
processor at a fixed rate, and the internal system time is represented by an 
integer variable, which is reset at system initialization and is incremented at 
each timer interrupt. The interval of time with which the timer is programmed 
to interrupt defines the unit of time in the system; that is, the minimum interval 
of time handled by the kernel (time resolution). The unit of time in the system 
is also called a system tick. 

In DICK, the system time is represented by a long integer variable, called 
sys_clock, whereas the value of the tick is stored in a float variable called 
time_unit. At any time, sys_clock contains the number of interrupts gener­
ated by the timer since system initialization. 

unsigned long 

float 

sys_clock; 

time_unit; 

/* system time */ 

/* unit of time (ms) */ 

If Q denotes the system tick and n is the value stored in sys_clock, the actual 
time elapsed since system initialization is i = nQ. The maximum time that can 
be represented in the kernel (the system lifetime) depends on the value of the 
system tick. Considering that sys_clock is an unsigned long represented on 32 
bits. Table 9.1 shows the values of the system lifetime for some tick values. 
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tick 

1 ms 
5 ms 
10 ms 
50 ms 

lifetime 
50 days 

8 months 
16 months 

7 years 

T a b l e 9.1 System lifetime for some typical tick values. 

The value to be assigned to the tick depends on the specific appHcation. In 
general, small values of the tick improve system responsiveness and allow to 
handle periodic activities with high activation rates. On the other hand, a 
very small tick causes a large runtime overhead due to the timer handling 
routine and reduces the system lifetime. Typical values used for the time 
resolution can vary from 1 to 50 milliseconds. To have a strict control on task 
deadlines and periodic activations, all time parameters specified on the tasks 
should be multiple of the system tick. If the tick can be selected by the user, 
the best possible tick value is equal to the greatest common divisor of all the 
task periods. 

The timer interrupt handling routine has a crucial role in a real-time system. 
Other than updating the value of the internal time, it has to check for possible 
deadline misses on hard tasks, due to some incorrect prediction on the worst-
case execution times. Other activities that can be carried out by the timer 
interrupt handling routine concern lifetime monitoring, activation of periodic 
tasks that are in idle state, awakening tasks suspended by a delay primitive, 
checking for deadlock conditions, and terminating tasks in zombie state. 

In DICK, the timer interrupt handling routine increments the value of the 
sys_clock variable, checks the system lifetime, checks for possible deadline 
misses on hard tasks, awakes idle periodic tasks at the beginning of their next 
period and, at their deadlines, deallocates all data structures of the tasks in 
zombie state. In particular, at each timer interrupt, the corresponding handling 
routine 

Saves the context of the task in execution; 

Increments the system time; 
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If the current time is greater than the system Ufetime, generates a timing 
error; 

If the current time is greater than some hard deadUne, generates a time-
overflow error; 

Awakens those idle tasks, if any, that have to begin a new period; 

If at least a task has been awakened, calls the scheduler; 

Removes all zombie tasks for which their deadline is expired; 

Loads the context of the current task; 

Returns from interrupt. 

The runtime overhead introduced by the execution the timer routine is pro­
portional to its interrupt rate. In Section 9.7 we see how this overhead can be 
evaluated and taken into account in the schedulability analysis. 

9.4.2 Task classes and scheduling algorithm 

Real-world control applications usually consist of computational activities hav­
ing different characteristics. For example, tasks may be periodic, aperiodic, 
time-driven, and event-driven and may have different levels of criticalness. To 
simplify the description of the kernel, only two classes of tasks are considered 
in DICK: 

HARD tasks, having a critical deadline, and 

Non-real-time (NRT) tasks, having a fixed priority. 

HARD tasks can be activated periodically or aperiodically depending on how 
an instance is terminated. If the instance is terminated with the primitive 
end-cycle, the task is put in the idle state and automatically activated by the 
timer at the beginning of its next period; if the instance is terminated with the 
primitive end-aperiodic, the task is put in the sleep state, from where it can 
be resumed only by explicit activation. HARD tasks are scheduled using the 
Earliest Deadline First (EDF) algorithm, whereas NRT tasks are executed in 
background based on their priority. 
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Figure 9.11 Mapping NRT priorities into deadlines. 

In order to integrate the scheduling of these classes of tasks and avoid the use of 
two scheduling queues, priorities of NRT tasks are transformed into deadlines 
so that they are always greater than HARD deadlines. The rule for mapping 
NRT priorities into deadlines is shown in Figure 9.11 and is such that 

^NRT ^ MAXDLINE - PRT.LEV -\- Pi, 

where MAXDLINE is the maximum value of the variable sys_clock (2^^ — 1), 
PRT_LEV is the number of priority levels handled by the kernel, and Pi is the 
priority of the task, in the range [0, PRT_LEV-1] (0 being the highest priority). 
Such a priority mapping slightly reduces system lifetime but greatly simplifies 
task management and queue operations. 

9.4.3 Global constants 

In order to clarify the description of the source code, a number of global 
constants are defined here. Typically, they define the maximum size of the 
main kernel data structures, such as the maximum number of processes and 
semaphores, the maximum length of a process name, the number of priority lev­
els, the maximum deadline, and so on. Other global constants encode process 
classes, states, and error messages. They are listed below: 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

#define 

MAXLEN 

MAXPROC 

MAXSEM 

MAXDLINE 

PRT_LEV 

NIL 

TRUE 

FALSE 

LIFETIME 

12 

32 

32 

OxTFFFFFFF 

255 

-1 

1 

0 

MAXDLINE -

/* 

/* 

/* 

/* 

/* 

/* 

PRT_LEV 

max string length 

max number of tasks 

max No of semaphores 

max deadline 

priority levels 

null pointer 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 
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/* ->- / 
/ ^ 
/* 
/* 

\ / ^ 
#define 

#define 

/* 
/ * 
/ * 
/* ~ -
/ * 
#define 

#define 

#define 

#define 

#define 

#define 

#define 

HARD 

NRT 

FREE 

READY 

EXE 

SLEEP 

IDLE 

WAIT 

ZOMBIE 

1 

2 

0 

1 

2 

3 

4 

5 

6 

Task types 

/* 

/* 

Task states 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

critical task 

non real-time task 

TCB not allocated 

ready state 

running state 

sleep state 

idle state 

wait state 

zombie state 

T / 

* / 
3k / 

*/ 
*/ 

*/ 

3k / 

*/ 
*/ 
3k / 

*/ 
*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

/* - -
/* 

/* 
#define 

#define 

#define 

#define 

#define 

#define 

OK 

TIME_OVERFLOW 

TIME_EXPIRED 

NO-GUARANTEE 

NO_TCB 

NO_SEM 

Error 

0 

1 

2 

3 

4 

5 

messages 

/* 

/* 

/* 

/* 

/* 

/* 

no error 

missed deadline 

lifetime reached 

task not schedulable 

too many tasks 

too many semaphores 

-*/ 

*/ 

-*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

*/ 

9.4.4 Initialization 

The real-time environment supported by DICK starts when the inLsystem 
primitive is executed within a sequential C program. After this function is 
executed, the main program becomes a NRT task in which new concurrent 
tasks can be created. 
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The most important activities performed by inLsystem concern 

• Initializing all queues in the kernel; 

• Setting all interrupt vectors; 

• Preparing the TCB associated with the main process; 

• Setting the timer period to the system tick. 

void ini_system(float t i ck) 

{ 
proc i ; 

time_unit = tick; 

<enable the timer to interrupt every time_unit> 

<initiali2e the interrupt vector table> 

/* initialize the list of free TCBs and semaphores */ 

for (i=0; KMAXPROC-1; i++) vdes[i].next = i+1; 

vdes[MAXPROC-l].next = NIL; 

for (i=0; i<MAXSEM-l; i++) vsem[i].next = i+1; 

vsem[MAXSEM-l].next = NIL; 

ready = NIL; 

idle = NIL; 

zombie = NIL; 

freetcb = 0; 

freesem = 0; 

util_fact = 0; 

<initialize the TCB of the main process> 

pexe = <main index>; 

} 
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9.5 KERNEL PRIMITIVES 

The structure of DICK is logically divided in a number of hierarchical layers, as 
illustrated in Figure 9.1. The lowest layer includes all interrupt handling drivers 
and the routines for saving and loading a task context. The next layer contains 
the functions for list manipulation (insertion, extraction, and so on) and the 
basic mechanisms for task management (dispatching and scheduling). All kernel 
services visible from the user are implemented at a higher level. They concern 
task creation, activation, suspension, termination, synchronization, and status 
inquiry. 

9.5.1 Low-level primitives 

Basically, the low-level primitives implement the mechanism for saving and 
loading the context of a task; that is, the values of the processor registers. 

/jk «*- / 

/ ^ 
/* save_context — of the task 

/* 
/ ^ 
void save_context(void) 

{ 
int *pc; 

<disable interrupts> 

pc = vdes[pexe].context; 

pc[0] = <register_0> 

pc[l] = <register_l> 

pc[2] = <register_2> 

pc[n] = <registerji> 

^ 

-r/ 

in execution */ 

- * / 
^/ 

/* pointer to context of pexe */ 

/* save register 0 */ 

/* save register 1 */ 

/* save register 2 */ 

/* save register n */ 
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/* - - -»- / 
/* 
/* load_context — of the task 
/* - -^ -
/5K - - ~ -

void load_context(void) 

{ 
int *pc; 

pc = vdes[pexe].context; 

<register_0> = pc[0]; 

<register_l> = pc[l] ; 

<register_ii> = pc[n]; 

<return from interrupt> 

} 

T / 

to be executed */ 
^1 
^1 

/^ pointer to context of pexe */ 

/* load register 0 */ 

/* load register 1 */ 

/* load register n */ 

9.5.2 List management 

Since tasks are scheduled based on EDF, all queues in the kernel are ordered 
by decreasing deadlines. In this way, the task with the earliest deadline can 
be simply extracted from the head of a queue, whereas an insertion operation 
requires to scan at most all elements of the list. All lists are implemented 
with bidirectional pointers (next and prev). The insert function is called with 
two parameters: the index of the task to be inserted and the pointer of the 
queue. It uses two auxiliary pointers, p and g, whose meaning is illustrated in 
Figure 9.12. 
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Figure 9.12 Inserting a TCB in a queue. 

/* 
/¥ 

/* insert — a task in a queue based on its deadline 

/jk / 5»C 

void insert (proc i, queue *que) 

{ 
long dl; /* deadline of the task to be inserted 

int p; /* pointer to the previous TCB 

int q; /* pointer to the next TCB 

p = NIL; 

q = *que; 

dl = vdes[i].dline; 

/* find the element before the insertion point */ 

while ((q != NIL) && (dl >= vdes[q].dline)) { 

p = q; 
q = vdes[q].next; 

} 
if (p != NIL) vdes[p].next = i; 

else *que = i; 

if (q != NIL) vdes[q].prev = i; 

vdes[i].next = q; 

vdes[i].prev = p; 

} 

-* / 
*/ 

-* / 

*/ 
*/ 
*/ 
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Figure 9.13 Extracting a TCB from a queue. 

The major advantage of using bidirectional pointers is in the implementation 
of the extraction operation, which can be realized in one step without scanning 
the whole queue. Figure 9.13 illustrates the extraction of a generic element, 
whereas Figure 9.14 shows the extraction of the element at the head of the 
queue. 

/* «»- / 
/ * 
/* e x t r a c t — a task from a queue 
/* 
/ * 
proc ex t rac t (proc i , queue *que) 

{ 
i n t P> q; /* a u x i l i a r y p o i n t e r s 

p = v d e s [ i ] . p r e v ; 

q = v d e s [ i ] . n e x t ; 

if (p == NIL) *que = q; / * f i r s t element 
e l s e vdes[p] .nex t = v d e s [ i ] . n e x t ; 

if (q != NIL) vdes[q] .prev = v d e s [ i ] . p r e v ; 

r e t u r n ( i ) ; 

} 

- r / 

* / 
3k / 
5 K / 

* / 

* / 
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Figure 9.14 Extracting the TCB at the head of a queue. 

/* */ 

/* getfirst — extracts the task at the head of a queue */ 

/* */ 

proc getfirst (queue *que) 

{ 
i n t q; 

q = *que; 

/* po in te r t o the f i r s t element */ 

i f (q == NIL) re turn(NIL) ; 

•que = vdes [q ] .nex t ; 

vdes[*que] .prev = NIL; 

r e t u r n ( q ) ; 

Finally, to simplify the code reading of the next levels, two more functions 
are defined: firstdline and empty. The former returns the deadline of the task 
at the head of the queue, while the latter returns TRUE if a queue is empty, 
FALSE otherwise. 
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/ • * / 

/* firstdline — returns the deadline of the first task */ 
/* */ 

long firstdline (queue *que) 

{ 
return(vdes[que].dline); 

} 

/* */ 

/* empty — returns TRUE if a queue is empty */ 
/* */ 

int empty (queue *que) 

{ 
if (que == NIL) 

return(TRUE); 

else 

return(FALSE); 

} 

9.5.3 Scheduling mechanism 

The scheduling mechanism in DICK is reahzed through the functions schedule 
and dispatch. The schedule primitive verifies whether the running task is the 
one with the earhest deadhne. If so, no action is done, otherwise the running 
task is inserted in the ready queue and the first ready task is dispatched. The 
dispatch primitive just assigns the processor to the first ready task. 
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/* */ 
/* schedule — selects the task with the earliest deadline */ 
/* */ 

void schedule (void) 

{ 
if (firstdline(ready) < vdesCpexe].dline) { 

vdes[pexe].state = READY; 

insert(pexe, feready); 

dispatchO ; 

} 

/* */ 

/* dispatch — assigns the cpu to the first ready task */ 

/* */ 

void dispatch (void) 

{ 
pexe = getfirst(&ready); 

vdes[pexe].state = RUN; 
} 

The timer interrupt handling routine is called wake.up and performs the ac­
tivities described in Section 9.4.1. In summary, it increments the sys.clock 
variable, checks for the system lifetime and possible deadline misses, removes 
those tasks in zombie state whose deadlines are expired, and, finally, resumes 
those periodic tasks in idle state at the beginning of their next period. Note, 
that if at least a task has been resumed, the scheduler is invoked and a pre­
emption takes place. 
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/* */ 

/* wake_up — timer interrupt handling routine */ 
/* */ 

void wake_up(void) 

{ 
proc p; 

int count = 0; 

save_context() ; 

sys_clock++; 

if (sys.clock >= LIFETIME) abort (TIME_EXPIRED) ; 

if (vdes[pexe].type == HARD) 

if (sys_clock > vdes [pexe] .dline) 

abort (TIME_OVERFLOW) ; 

while ( 'empty(zombie) && 

(firstdline(zombie) <= sys_clock)) { 

p = getfirst(fezombie); 

util_fact = util_fact - vdes [p] .util; 

vdes[p].state = FREE; 

insert(p, &freetcb); 

} 
while (!empty(idle) && (firstdline(idle) <= sys_clock)) { 

p = getfirst(feidle); 

vdes[p].dline += (long)vdes[p].period; 

vdes[p].state = READY; 

insert(p, feready); 

count++; 

} 
if (count > 0) s chedu leO; 
load_context 0 ; 

} 
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9.5.4 Task management 

It concerns creation, activation, suspension, and termination of tasks. The 
create primitive allocates and initializes all data structures needed by a task 
and puts the task in SLEEP. A guarantee is performed for HARD tasks. 

/* 
\ / ^ 
/* create — creates a task and puts it in sleep state 

/* 
\ / ^ 
proc create( 

char naine[MAXLEN+l] , /* task name 

proc (*addr)(), /* task address 

int type, /* type (HARD, NRT) 

float period, /* period or priority 

float wcet) /* execution time 

{ 
proc p; 

<disable cpu interrupts> 

p = getfirst(&freetcb); 

if (p == NIL) abort(NO_TCB); 

if (vdesCp].type == HARD) 

if (! guarantee (p)) return(NO_GUARANTEE) ; 

vdesEp].name = name; 

vdesEp].addr = addr; 

vdes[p].type = type; 

vdes[p].state = SLEEP; 

vdes[p].period = (int)(period / time_unit); 

vdesEp].wcet = (int)(wcet / time_unit); 

vdes[p].util = wcet / period; 

vdes[p].prt = (int)period; 

vdesCp] .dline = MAXJLONG + (long) (period - PRT_LEV) ; 

<initialize process stack> 

<enable cpu interrupts> 

return(p); 

J 

- * / 

* / 

- * / 

* / 
* / 

* / 

• / 

* / 
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/* */ 

/* guarantee — guarantees the feasibility of a hard task */ 
/• */ 

int guarantee (proc p) 

{ 
util_fact = util_fact + vdes[p] .ut i l ; 
if (util_fact > 1.0) { 

util_fact = utiljfact - vdesCp] .ut i l ; 
return(FALSE); 

} 
else return(TRUE); 

The system call activate inserts a task in the ready queue, performing the 
transition SLEEP-READY. If the task is HARD, its absolute deadline is set 
equal to the current time plus its period. Then the scheduler is invoked to 
select the task with the earliest deadline. 

/ * - _ - _ - „ « - . s i , / 

/ * 
/* a c t i v a t e — i n s e r t s a t a sk in the ready queue 
/* - - - -
/ * 
i n t act ivate (proc p) 

{ 
save_context 0 ; 
if (vdes[p] . type == HARD) 

v d e s [ p ] . d l i n e = sys_clock + ( long)vdes [p] .per iod ; 

I vdesCp] . s t a te = READY; 
i n s e r t ( p , feready); 
schedule 0 ; 
load_context() ; 

} 

- r / 

*/ 
3k / 
^/ 
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The transition RUN-SLEEP is performed by the sleep system call. The running 
task is suspended in the sleep state, and the first ready task is dispatched for 
execution. Notice that this primitive acts on the calling task, which can be 
periodic or aperiodic. For example, the sleep primitive can be used at the end 
of a cycle to terminate an aperiodic instance. 

/* */ 

/* sleep — suspends itself in a sleep state */ 
/* */ 

void sleep (void) 

{ 
save_context 0 ; 
vdesCp] . s ta te = SLEEP; 
d i s p a t c h O ; 
load_context 0 ; 

The primitive for terminating a periodic instance is a bit more complex than 
its aperiodic counterpart, since the kernel has to be informed on the time at 
which the timer has to resume the job. This operation is performed by the 
primitive end-cycle, which puts the running task into the idle queue. Since it is 
assumed that deadlines are at the end of the periods, the next activation time 
of any idle periodic instance coincides with its current absolute deadline. 

In the particular case in which a periodic job finishes exactly at the end of its 
period, the job is inserted not in the idle queue but directly in the ready queue, 
and its deadline is set to the end of the next period. 
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/* */ 

/* end_cycle — inserts a task in the idle queue */ 
/• */ 

void end_cycle(void) 

{ 
long dl; 

save_context 0 ; 

dl = vdes[pexe].dline; 

if (sys_clock < dl) { 

vdes [pexe ] . s t a t e = IDLE; 
i n s e r t ( p e x e , feidle); 

} 
else { 

dl = dl + (long)vdes[pexe].period,• 

vdes[p].dline = dl; 

vdes[p].state = READY; 

insert(pexe, feready); 

} 
dispatchO ; 

load_context(); 

A typical example of periodic task is shown in the following code: 

proc cycle 0 

{ 
while (TRUE) { 

<periodic code> 
end_cycle() ; 

} 
} 
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There are two primitives for terminating a process: the first, called end-process, 
directly operates on the calling task; the other one, called kill, terminates the 
task passed as a formal parameter. Notice that, if the task is HARD, it is 
not immediately removed from the system but put in ZOMBIE state. In this 
case, the complete removal will be done by the timer routine at the end of the 
current period: 

/* */ 

/* end_process — terminates the running task */ 

/* */ 

void end_process(void) 

{ 
<disable cpu interrupts> 

if (vdesCpexe].type == HARD) 

insert(pexe, fezombie); 

else { 

vdes[pexe].state = FREE; 

insert(pexe, &freetcb); 

} 
dispatchO ; 

load_context() ; 

} 
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/ • * / 

/* k i l l — terminates a task */ 
/* */ 

vo 

{ 

id 

<d: 

if 

} 
if 

if 

if 

kill (pro c p) 

Lsable cpu interrupts> 

(pexe == p) { 
end_process() ; 

return; 

(vdes[p]. 

(vdes[p]. 

(vdes[p]. 

insert(p 

else { 

} 
<er 

vdes[p]. 

insert(p 

lable cpu 

state == 

state == 

type == 

), fezomb: 

state = 

= READY) 

= IDLE) 

HARD) 

Le) ; 

FREE; 

), fefreetcb) ; 

interrupts> 

extract 

extract 
(P» 
(P, 

feready) 

feidle); 

9.5.5 Semaphores 

In DICK, synchronization and mutual exclusion are handled by semaphores. 
Four primitives are provided to the user to allocate a new semaphore (newsem), 
deallocate a semaphore (delsem), wait for an event (wait), and signal an event 
(signal). 

The newsem primitive allocates a free semaphore control block and initial­
izes the counter field to the value passed as a parameter. For example, s i = 
newsem(O) defines a semaphore for synchronization, whereas s2 = newsem(l) 
defines a semaphore for mutual exclusion. The delsem primitive just deallocates 
the semaphore control block, inserting it in the list of free semaphores. 



Kernel Design Issues 285 

1 /*-
/ * 

/*-

sem 

{ 
sem 

} 

newsem --- allocates and initializes a semaphore 

newsem(int n) 

s; 

<disable cpu interrupts> 

s = freesem; 

if (s == 

freesem 

vsem[s] 

vsem[s] 

<enable 

return(s 

= NIL) abort (NO_SEM) 

= vsem[s] .next; 

count = n; 

qsem = NIL; 

cpu interrupts> 

0; 

/* first free semaphore 

) 

/* 

/* 

/* 

update the freesem 

initialize counter 

rie / 

*/ 
*/ 

- Jk / 

*/ 

index */ 

list 

initialize sem. queue 

*/ 

*/ 

*/ 

/ j l C _ _ „ _ U , / 

/* delsem — deallocates a semaphore 

/* - - - - -
/ JK - - - - -

void delsem(sem s) 

{ 
<disable cpu interrupts> 

vsem[s].next = freesem; /* inserts s at the head 

freesem = s; /* of the freesem list 

<enable cpu interrupts> 

} 

*/ 
9k / 

*/ 

*/ 

•/ 

The wait primitive is used by a task to wait for an event associated to a 
semaphore. If the semaphore counter is positive, it is decremented, and the 
task continues its execution; if the counter is less than or equal to zero, the 
task is blocked, and it is inserted in the semaphore queue. In this case, the first 
ready task is assigned to the processor by the dispatch primitive. 
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To ensure the consistency of the kernel data structures, all semaphore system 
calls are executed with cpu interrupts disabled. Notice that semaphore queues 
are ordered by decreasing absolute deadlines, so that, when more tasks are 
blocked, the first task awakened will be the one with the earliest deadline. 

/* */ 

/* wait — waits for an event */ 

/* */ 

void wait(sem s) 

{ 
<disable cpu interrupts> 

if (vsem[s].count > 0) vsem[s].count — ; 

else { 

save.context () ; 

vdes[pexe].state = WAIT; 

insert(pexe, &vsem[s].qsem); 

dispatchO ; 

load-Context 0 ; 

} 
<enable cpu interrupts> 

The signal primitive is used by a task to signal an event associated with a 
semaphore. If no tasks are blocked on that semaphore (that is, if the semaphore 
queue is empty), the counter is incremented, and the task continues its execu­
tion. If there are blocked tasks, the task with the earliest deadline is extracted 
from the semaphore queue and is inserted in the ready queue. Since a task has 
been awakened, a context switch may occur; hence, the context of the running 
task is saved, a task is selected by the scheduler, and a new context is loaded. 
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/* */ 
/* signal — signals an event */ 
/* */ 

void signal(sem s) 

{ 
proc p; 

<disable cpu interrupts> 

if (!empty(vsem[s].qsem)) { 

p = getfirst(&vsem[s].qsem); 

vdes[p].state = READY; 

insert(p, feready); 

save_context() ; 

schedule 0; 

load_context() ; 
} 

else vsem[s].count++; 

<enable cpu interrupts> 
} 

It is worth observing that classical semaphores are prone to the priority inver­
sion phenomenon, which introduces unbounded delays during tasks' execution 
and prevents any form of guarantee on hard tasks (this problem is discussed 
in Chapter 7). As a consequence, this type of semaphores should be used only 
by non-real-time tasks, for which no guarantee is performed. Real-time tasks, 
instead, should rely on more predictable mechanisms, based on time-bounded 
resource access protocols (such as Stack Resource Policy) or on asynchronous 
communication buffers. In DICK, the communication among hard tasks occurs 
through an asynchronous buffering mechanism, which is described in Section 
9.6. 

9.5.6 Status inquiry 
DICK also provides some primitives for inquiring the kernel about internal 
variables and task parameters. For example, the following primitives allow to 
get the system time, the state, the deadline, and the period of a desired task. 
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/ • * / 

/* get-time — returns the system time in milliseconds */ 
/• */ 

float get_time(void) 

{ 
return (time .unit • sys_clock) ; 

} 

/* */ 
/ • get_state — returns the s ta te of a task */ 
/ • ^1 

int get_state(proc p) 

{ 
return(vdes[p] .s ta te) ; 

} 

/* '• */ 
/* get_dline — returns the deadline of a task */ 

/* */ 

long get_dline(proc p) 

{ 
return(vdes[p].dline); 

} 

/* */ 
/* get_period — returns the period of a task */ 
/* */ 

float get_period(proc p) 

{ 
return(vdes[p].period); 

} 
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9.6 INTERTASK COMMUNICATION 
MECHANISMS 

Intertask communication is a critical issue in real-time systems, even in a 
uniprocessor environment. In fact, the use of shared resources for implementing 
message passing schemes may cause priority inversion and unbounded blocking 
on tasks' execution. This would prevent any guarantee on the task set and 
would lead to a highly unpredictable timing behavior. 

In this section, we discuss problems and solutions related to the most typical 
communication semantics used in operating systems: the synchronous and the 
asynchronous model. 

In the pure synchronous communication model, whenever two tasks want to 
communicate they must be synchronized for a message transfer to take place. 
This synchronization is called a rendez-vous. Thus, if the sender starts first, 
it must wait until the recipient receives the message; on the other hand, if the 
recipient starts first, it must wait until the sender produces its message. 

In a dynamic real-time system, synchronous communication schemes easily lead 
to unpredictable behavior, due to the difficulty of estimating the maximum 
blocking time for a process rendez-vous. In a static real-time environment, the 
problem can be solved off-line by transforming all synchronous interactions into 
precedence constraints. According to this approach, each task is decomposed 
into a number of subtasks that contain communication primitives not inside 
their code but only at their boundary. In particular, each subtask can receive 
messages only at the beginning of its execution and can send messages only at 
the end. Then a precedence relation is imposed between all adjacent subtasks 
deriving from the same father task and between all subtasks communicating 
through a send-receive pair. An example of such a task decomposition is illus­
trated in Figure 9.15. 

In a pure asynchronous scheme, communicating tasks do not have to wait for 
each other. The sender just deposits its message into a channel and continues 
its execution, independently of the recipient condition. Similarly, assuming 
that at least a message has been deposited into the channel, the receiver can 
directly access the message without synchronizing with the sender. 

Asynchronous communication schemes are more suitable for dynamic real-time 
systems. In fact, if no unbounded delays are introduced during tasks' commu­
nication, timing constraints can easily be guaranteed without increasing the 
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Figure 9.15 Decomposition of communicating tasks (a) into subtasks with 
precedence constraints (b). 

complexity of the system (for example, overconstraining the task set with addi­
tional precedence relations). Remember that having simple on-line guarantee 
tests (that is, with polynomial time complexity) is crucial for dynamic systems. 

In most commercial real-time operating systems, the asynchronous commu­
nication scheme is implemented through a mailbox mechanism, illustrated in 
Figure 9.16. A mailbox is a shared memory buffer capable of containing a fixed 
number of messages that are typically kept in a FIFO queue. The maximum 
number of messages that at any instant can be held in a mailbox represents its 
capacity. 

Two basic operations are provided on a mailbox - namely, send and receive. 
A send(MX, mes) operation causes the message mes to be inserted in the 
queue of mailbox MX. If at least a message is contained on mailbox M X , a 
receive (MX, mes) operation extracts the first message from its queue. Notice 
that, if the kernel provides the necessary support, more than two tasks can 
share a mailbox, and channels with multiple senders and/or multiple receivers 
can be realized. As long as it is guaranteed that a mailbox is never empty and 
never full, sender(s) and receiver(s) are never blocked. 

Unfortunately, a mailbox provides only a partial solution to the problem of 
asynchronous communication, since it has a bounded capacity. Unless sender 
and receiver have particular arrival patterns, it is not possible to guarantee 
that the mailbox queue is never empty or never full. If the queue is full, the 
sender must be delayed until some message is received. If the queue is empty, 
the receiver must wait until some message is inserted. 
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F i g u r e 9.16 The mailbox scheme. 

For example, consider two periodic tasks, TI and r2, with periods Ti and T2, 
that exchange messages through a mailbox having a capacity of n. Let ri be the 
sender and r2 the receiver. If Ti < T2, the sender inserts in the mailbox more 
messages than the receiver can extract; thus, after a while the queue becomes 
full and the sender must be delayed. From this time on, the sender has to wait 
the receiver, so it synchronizes with its period (T2). Viceversa, if Ti > T2, the 
receiver reads faster than the sender can write; thus, after a while the queue 
becomes empty and the receiver must wait. From this time on, the receiver 
synchronizes with the period of the sender (Ti). In conclusion, if Ti ^ T2, 
sooner or later both tasks will run at the lowest rate, and the task with the 
shortest period will miss its deadline. 

An alternative approach to asynchronous communication is provided by acycli-
cal asynchronous buffers, which are described in the next section. 

9.6.1 Cyclical asynchronous buffers 

Cyclical Asynchronous Buffers, or CABs, represent a particular mechanism 
purposely designed for the cooperation among periodic activities, such as con­
trol loops and sensory acquisition tasks. This approach was first proposed 
by Clark [Cla89] for implementing a robotic application based on hierarchical 
servo-loops, and it is used in the HARTIK system [But93, BD93] as a basic 
communication support among periodic hard tasks. 

A CAB provides a one-to-many communication channel, which at any instant 
contains the latest message or data inserted in it. A message is not consumed 
(that is, extracted) by a receiving process but is maintained into the CAB 
structure until a new message is overwritten. As a consequence, once the first 
message has been put in a CAB, a task can never be blocked during a receive 
operation. Similarly, since a new message overwrites the old one, a sender can 
never be blocked. 
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Notice that, using such a semantics, a message can be read more than once if 
the receiver is faster than the sender, while messages can be lost if the sender 
is faster than the receiver. However, this is not a problem in many control 
applications, where tasks are interested only in fresh sensory data rather than 
in the complete message history produced by a sensory acquisition task. 

CABs can be created and initialized by the operi-cab primitive, which requires 
specifying the CAB name, the dimension of the message, and the number of 
messages that the CAB may contain simultaneously. The delete-cab primitive 
removes a CAB from the system and releases the memory space used by the 
buffers. 

To insert a message in a CAB, a task must first reserve a buffer from the CAB 
memory space, then copy the message into the buffer, and finally put the buffer 
into the CAB structure, where it becomes the most recent message. This is 
done according to the following scheme: 

buf .po in te r = reserve(cab_id) ; 

<copy message in *buf _pointer> 

pu tmes (buf -po in te r , cab_id) ; 

Similarly, to get a message from a CAB, a task has to get the pointer to the most 
recent message, use the data, and release the pointer. This is done according 
to the following scheme: 

mes_pointer = getmes(cab_id) ; 

<use message> 

unget (mes .poin ter , cab_id) ; 

Notice that more tasks can simultaneously access the same buffer in a CAB 
for reading. On the other hand, if a task P reserves a CAB for writing while 
another task Q is using that CAB, a new buffer is created, so that P can write its 
message without interfering with Q. As P finishes writing, its message becomes 
the most recent one in that CAB. The maximum number of buffers that can 
be created in a CAB is specified as a parameter in the operi-cab primitive. To 
avoid blocking, this number must be equal to the number of tasks that use the 
CAB plus one. 
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9.6.2 CAB implementation 

The data structure used to implement a CAB is shown in Figure 9.17. A 
CAB control block must store the maximum number of buffers {max.buf}, their 
dimension {dim.huf)^ a pointer to a list of free buffers {free), and a pointer to 
the most recent buffer (mrb). Each buffer in the CAB can be implemented as 
a data structure with three fields: a pointer (next) to maintain a list of free 
buffers, a counter (use) that stores the current number of tasks accessing that 
buffer, and a memory area (data) for storing the message. 

The code of the four CAB primitives is shown below. Notice that the main 
purpose of the putmes primitive is to update the pointer to the most recent 
buffer (MRB). Before doing that, however, it deallocates the old MRB if no 
tasks are accessing that buffer. Similarly, the unget primitive decrements the 
number of tasks accessing that buffer and deallocates the buffer only if no task 
is accessing it and it is not the MRB. 
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F i g u r e 9.17 CAB data structure. 
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/jk ^ 1 
/ ^ 
/* reserve — reserves a buffer 

/* 
/ '•' 
pointer reserve(cab c) 

{ 
pointer p; 

<disable cpu interrupts> 

p = c.free; 

c.free = p.next; 

return(p); 

<enable cpu interrupts> 

} 

in a CAB 

/* get a free buffer 

/* update the free list 

'^1 

*/ 
•it. / 
*/ 

*/ 
*/ 

/* 
/* putmes — puts a message in a CAB 
/* 

void putmes(cab c, pointer p) 

{ 
<disable cpu interrupts> 

if (c.mrb.use == 0) { 

c.mrb.next = c.free; 

c.free = c.mrb; 

} 
c.mrb = p; 

<enable cpu interrupts> 

/* update the mrb 

-*/ 

*/ 

*> 

/* if not accessed, */ 

/* deallocate the mrb */ 

*/ 
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/ * Jk / 
/ ̂  */ 
/* getmes — gets a pointer to the most recent buffer */ 

/ * - jk / 
/* */ 
pointer getmes (cab c) 

{ 
pointer p; 

<disable cpu interrupts> 

p = c.mrb; /* get the pointer to mrb */ 

p.use = p.use + 1 ; /* increment the counter */ 

return(p); 

<enable cpu interrupts> 

} 

/* 
/* 
/* unget — deallocates a buffer only if it is not accessed 

/* and it is not the most recent buffer 

/* -
/* 
void unget (cab c, pointer p) 

{ 
<disable cpu interrupts> 

p.use = p.use - 1; 

if ((p.use == 0) && (p != c.mrb)) { 

p.next = c.free; 

c.free = p; 

} 
<enable cpu interrupts> 

} 

-* / 
*/ 
*/ 

-* / 
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timer interrupts 

Figure 9.18 Effects of the overhead on tasks' execution. 

9.7 SYSTEM OVERHEAD 

The overhead of an operating system represents the time used by the proces­
sor for handhng all kernel mechanisms, such as enqueueing tasks, performing 
context switches, updating the internal data structures, sending messages to 
communication channels, servicing the interrupt requests, and so on. The time 
required to perform these operations is usually much smaller than the execution 
times of the application tasks; hence, it can be neglected in the schedulability 
analysis and in the resulting guarantee test. In some cases, however, when 
application tasks have small execution times and tight timing constraints, the 
activities performed by the kernel may not be so negligible and may create a 
significant interference on tasks' execution. In these situations, predictability 
can be achieved only by considering the effects of the runtime overhead in the 
schedulability analysis. 

The context switch time is one of the most significant overhead factors in any 
operating system. It is an intrinsic limit of the kernel that does not depend 
on the specific scheduling algorithm, nor on the structure of the application 
tasks. For a real-time system, another important overhead factor is the time 
needed by the processor to execute the timer interrupt handling routine. If Q 
is the system tick (that is, the period of the interrupt requests from the timer) 
and G is the worst-case execution time of the corresponding driver, the timer 
overhead can be computed as the utilization factor Ut of an equivalent periodic 
task: 

Figure 9.18 illustrates the execution intervals (cr) due to the timer routine and 
the execution intervals [5) necessary for a context switch. The eflPects of the 
timer routine on the schedulability of a periodic task set can be taken into 
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Figure 9.19 Net utilization bound as a function of the tick value. 

account by adding the factor Ut to the total utiHzation of the task set. This 
is the same as reducing the least upper bound of the utilization factor Uiub by 
Ut, so that the net bound becomes 

Unet = Ulub — Ut = Uiub — 
Q u. lub 

Q - <ylUiub 

Q 

From this result we can notice that, to have Unet > 0, the system tick Q 
must always be greater than {a/Uiub)- The plot of Unet as a function of Q 
is illustrated in Figure 9.19. To have an idea of the degradation caused by 
the timer overhead, consider a system based on the EDF algorithm {Uiub = 1) 
and suppose that the timer interrupt handling routine has an execution time 
of (J = 100/X5. In this system, a 10 ms tick would cause a net utilization bound 
Unet = 0.99; a 1 ms tick would decrease the net utilization bound to Unet =0 .9 ; 
whereas a 200fis tick would degrade the net bound to Unet = 0.5. This means 
that, if the greatest common divisor among the task periods is 200/is, a task 
set with utilization factor U = 0.6 cannot be guaranteed under this system. 

The overhead due to other kernel mechanisms can be taken into account as 
an additional term on tasks' execution times. In particular, the time needed 
for explicit context switches (that is, the ones triggered by system calls) can 
be considered in the execution time of the kernel primitives; thus, it will be 
charged to the worst-case execution time of the calling task. Similarly, the 
overhead associated with implicit context switches (that is, the ones triggered 
by the kernel) can be charged to the preempted tasks. 
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In this case, the schedulabiUty analysis requires a correct estimation of the total 
number of preemptions that each task may experience. In general, for a given 
scheduling algorithm, this number can be estimated off-line as a function of 
tasks' timing constraints. If Ni is the maximum number of preemptions that 
a periodic task TI may experience in each period, and 6 is the time needed to 
perform a context switch, the total utilization factor (overhead included) of a 
periodic task set can be computed as 

i=l * i=l * \ 1=1 * / 

Hence, we can write 
Utot — Up + Uovi 

where Up is the utilization factor of the periodic task set and Uov is a correction 
factor that considers the effects of the timer handling routine and the preemp­
tion overhead due to intrinsic context switches (explicit context switches are 
already considered in the C '̂s terms): 

"" TV-

1 ^ 

Finally, notice that an upper bound for the number of preemptions Ni on a 
task Ti can be computed as 

A ^ ^ - E Tk 
k=i •-

However, this bound is too pessimistic, and better bounds can be found for 
particular scheduling algorithms. 

9,7.1 Accounting for interrupt 

Two basic approaches can be used to handle interrupts coming from external 
devices. One method consists of associating an aperiodic or sporadic task to 
each source of interrupt. This task is responsible for handling the device and 
is subject to the scheduling algorithm as any other task in the system. With 
this method, the cost for handling the interrupt is automatically taken in to 
account by the guarantee mechanism, but the task may not start immediately, 
due to the presence of higher-priority hard tasks. This method cannot be used 
for those devices that require immediate service for avoiding data loss. 
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Another approach allows interrupt handling routines to preempt the current 
task and execute immediately at the highest priority. This method minimizes 
the interrupt latency, but the interrupt handling cost has to be explicitly con­
sidered in the guarantee of the hard tasks. 

JefFay and Stone [JS93] found a schedulability condition for a set of n hard tasks 
and m interrupt handlers. In their work, the analysis is carried out by assuming 
a discrete time, with a resolution equal to a tick. As a consequence, every event 
in the system occurs at a time that is multiple of the tick. In their model, there 
is a set X of m handlers, characterized by a worst-case execution time C/^ and 
a minimum separation time Tf^, just as sporadic tasks. The difference is that 
interrupt handlers always have a priority higher than the application tasks. 

The upper bound, / ( / ) , for the interrupt handling cost in any time interval of 
length / can be computed by the following recurrent relation [JS93]: 

ifEr=.[T7^1^," > / ( ' - ! ) (9.1) 
otherwise. 

In the particular case in which all the interrupt handlers start at time t = 0, 
function /( /) is exactly equal to the amount of time spent by processor in 
executing interrupt handlers in the interval [0,/]. 

Theorem 9.1 (JefFay-St one) A set T of n periodic or sporadic tasks and a 
set X of m interrupt handlers is schedulahle by EDF if and only if for all L, 
L>0, 

^ ' c , < L-f{L). (9.2) E Ti 

The proof of Theorem 9.1 is very similar to the one presented for Theorem 4.2. 
The only difference is that, in any interval of length L, the amount of time 
that the processor can dedicate to the execution of application tasks is equal 
to L - / ( L ) . 

It is worth to notice that equation (9.2) can be checked only for a set of points 
equal to release times less than the hyperperiod, and the complexity of the 
computation is pseudo-polynomial. 




